120 resultados para Energetically economic analysis
Resumo:
The fuel cell is an emerging cogeneration technology that has been applied successfully in Japan, the USA and some countries in the European Union. This system performs direct conversion of the chemical energy of the oxidation of hydrogen from fuel with atmospheric oxygen into direct current electricity and waste heat via an electrochemical process relying on the use of different electrolytes (phosphoric acid, molten carbonate and solid oxide, depending on operating temperature). This technology permits the recovery of waste heat, available from 200 degreesC up to 1000 degreesC depending on the electrolyte technology, which can be used in the production of steam, hot or cold water, or hot or cold air, depending on the associated recuperation equipment. In this paper, an energy, exergy and economic analysis of a fuel cell cogeneration system (FCCS) is presented. The FCCS is applied in a segment of the tertiary sector to show that it is a feasible alternative for rational decentralized energy production under Brazilian conditions. The technoeconomic analysis shows a global efficiency or fuel utilization efficiency of 86%. Analysis shows that the exergy losses in the fuel cell unit and the absorption refrigeration system are significant. Furthermore, the payback period estimated is about 3 and 5 years for investments in fuel cells of 1000 and 1500 US$/kW, respectively. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
In this paper, a thermoeconomic analysis method based on the First and the Second Law of Thermodynamics and applied to analyse the replacement of an equipment of a cogeneration system is presented. The cogeneration system consists of a gas turbine linked to a waste boiler. The electrical demand of the campus is approximately 9 MW but the cogen system generates approximately one third of the university requirement as well as 1.764 kg/s of saturated steam (at 0.861 MPa), approximately, from a single fuel source. The energy-economic study showed that the best system, based on pay-back period and based on the maximum savings (in 10 years), was the system that used the gas turbine M1T-06 of Kawasaki Heavy Industries and the system that used the gas turbine CCS7 of Hitachi Zosen, respectively. The exergy-economic study showed that the best system, which has the lowest EMC, was the system that used the gas turbine ASE50 of Allied Signal. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
An expressive amount of produced hydrogen is generated by customers in-situ such as petrochemical, fertilizer and sugarcane industries. However, the most utilized feedstock is natural gas, a non-renewable and fossil fuel. The introduction of biohydrogen production process associated in a sugarcane industry is an alternative to diminish emissions and contribute to create a CO2 cycle, where the plants capture this gas by photosynthesis process and produces sucrose for ethanol production. The cost of production of ethanol has dramatically decreased (from about US$ 700/m3 in 1970s to US$ 200/m3 today), becoming this a good option at near term, inclusively for its utilization by customers localized in main regions (localized especially in regions such as Southeastern Brazil) Also in near future, it will possible the utilization of fuel cells as form of distributed generation. Its utilization could occur specially in peak hours, diminishing the cost of investments in newer transmission systems. A technical and economic analysis of steam reformer of ethanol to hydrogen production associated with sugarcane industry was recently performed. This technique will also allow the use of ethanol when its price is relatively low. This study was based on a previous R&D study (sponsored by CEMIG - State of Minas Gerais Electricity Company) where thermodynamic and economic analyses were developed, based in the development of two ethanol steam reformers prototypes.x In this study an analysis was performed considering the use of bagasse as source of heat in the steam reforming process. Its use could to diminish the costs of hydrogen production, especially at large scale, obtaining cost-competitive production and permitting that sugarcane industry produces hydrogen in large scale beyond ethylic alcohol, anhydrous alcohol (or ethanol) and sugar.
Resumo:
This work has as objective to demonstrate technical and economic viability of hydrogen production utilizing glycerol. The volume of this substance, which was initially produced by synthetic ways (from oil-derived products), has increased dramatically due mainly to biodiesel production through transesterification process which has glycerol as main residue. The surplus amount of glycerol has been generally utilized to feed poultry or as fuel in boilers, beyond other applications such as production of soaps, chemical products for food industry, explosives, and others. The difficulty to allocate this additional amount of glycerol has become it in an enormous environment problem, in contrary to the objective of biodiesel chain, which is to diminish environmental impact substituting oil and its derivatives, which release more emissions than biofuels, do not contribute to CO2-cycle and are not renewable sources. Beyond to utilize glycerol in combustion processes, this material could be utilized for hydrogen production. However, a small quantity of works (theoretical and experimental) and reports concerning this theme could be encountered. Firstly, the produced glycerol must be purified since non-reacted amounts of materials, inclusively catalysts, contribute to deactivate catalysts utilized in hydrogen production processes. The volume of non-reacted reactants and non-utilized catalysts during transesterification process could be reutilized. Various technologies of thermochemical generation of hydrogen that utilizes glycerol (and other fuels) were evaluated and the greatest performances and their conditions are encountered as soon as the most efficient technology of hydrogen production. Firstly, a physicochemical analysis must be performed. This step has as objective to evaluate the necessary amount of reactants to produce a determined volume of hydrogen and determine thermodynamic conditions (such as temperature and pressure) where the major performances of hydrogen production could be encountered. The calculations are based on the process where advance degrees are found and hence, fractions of products (especially hydrogen, however, CO2, CO, CH4 and solid carbon could be also encountered) are calculated. To produce 1 Nm3/h of gaseous hydrogen (necessary for a PEMFC - Proton Exchange Membrane Fuel Cell - containing an electric efficiency of about 40%, to generate 1 kWh), 0,558 kg/h of glycerol is necessary in global steam reforming, 0,978 kg/h of glycerol in partial oxidation and cracking processes, and 0,782 kg/h of glycerol in autothermal reforming process. The dry reforming process could not be performed to produce hydrogen utilizing glycerol, in contrary to the utilization of methane, ethanol, and other hydrocarbons. In this study, steam reforming process was preferred due mainly to higher efficiencies of production and the need of minor amount of glycerol as cited above. In the global steam reforming of glycerine, for one mole of glycerol, three moles of water are necessary to produce three moles of CO2 and seven moles of H2. The response reactions process was utilized to predict steam reforming process more accurately. In this mean, the production of solid carbon, CO, and CH4, beyond CO2 and hydrogen was predicted. However, traces of acetaldehyde (C2H2), ethylene (C2H4), ethylene glycol, acetone, and others were encountered in some experimental studies. The rates of determined products obviously depend on the adopted catalysts (and its physical and chemical properties) and thermodynamic conditions of hydrogen production. Eight reactions of steam reforming and cracking were predicted considering only the determined products. In the case of steam reforming at 600°C, the advance degree of this reactor could attain its maximum value, i.e., overall volume of reactants could be obtained whether this reaction is maintained at 1 atm. As soon as temperature of this reaction increases the advance degree also increase, in contrary to the pressure, where advance degree decrease as soon as pressure increase. The fact of temperature of reforming is relatively small, lower costs of installation could be attained, especially cheaper thermocouples and smaller amount of thermo insulators and materials for its assembling. Utilizing the response reactions process in steam reforming, the predicted volumes of products, for the production of 1 Nm3/h of H2 and thermodynamic conditions as cited previously, were 0,264 kg/h of CO (13% of molar fraction of reaction products), 0,038 kg/h of CH4 (3% of molar fraction), 0,028 kg/h of C (3% of molar fraction), and 0,623 kg/h of CO2 (20% of molar fraction). Through process of water-gas shift reactions (WGSR) an additional amount of hydrogen could be produced utilizing mainly the volumes of produced CO and CH4. The overall results (steam reforming plus WGSR) could be similar to global steam reforming. An attention must to be taking into account due to the possibility to produce an additional amount of CH4 (through methanation process) and solid carbon (through Boudouard process). The production of solid carbon must to be avoided because this reactant diminishes (filling the pores) and even deactivate active area of catalysts. To avoid solid carbon production, an additional amount of water is suggested. This method could be also utilized to diminish the volume of CO (through WGSR process) since this product is prejudicial for the activity of low temperature fuel cells (such as PEMFC). In some works, more three or even six moles of water are suggested. A net energy balance of studied hydrogen production processes (at 1 atm only) was developed. In this balance, low heat value of reactant and products and utilized energy for the process (heat supply) were cited. In the case of steam reforming utilizing response reactions, global steam reforming, and cracking processes, the maximum net energy was detected at 700°C. Partial oxidation and autothermal reforming obtained negative net energy in all cited temperatures despite to be exothermic reactions. For global steam reforming, the major value was 114 kJ/h. In the case of steam reforming, the highest value of net energy was detected in this temperature (-170 kJ/h). The major values were detected in the cracking process (up to 2586 kJ/h). The exergetic analysis has as objective, associated with physicochemical analysis, to determine conditions where reactions could be performed at higher efficiencies with lower losses. This study was performed through calculations of exergetic and rational efficiencies, and irreversibilities. In this analysis, as in the previously performed physicochemical analysis, conditions such as temperature of 600°C and pressure of 1 atm for global steam reforming process were suggested due to lower irreversibility and higher efficiencies. Subsequently, higher irreversibilities and lower efficiencies were detected in autothermal reforming, partial oxidation and cracking process. Comparing global reaction of steam reforming with more-accurate steam reforming, it was verified that efficiencies were diminished and irreversibilities were increased. These results could be altered with introduction of WGSR process. An economic analysis could be performed to evaluate the cost of generated hydrogen and determine means to diminish the costs. This analysis suggests an annual period of operation between 5000-7000 hours, interest rates of up to 20% per annum (considering Brazilian conditions), and pay-back of up to 20 years. Another considerations must to be take into account such as tariffs of utilized glycerol and electricity (to be utilized as heat source and (or) for own process as pumps, lamps, valves, and other devices), installation (estimated as US$ 15.000 for a plant of 1 Nm3/h) and maintenance cost. The adoption of emission trading schemes such as carbon credits could be performed since this is a process with potential of mitigates environment impact. Not considering credit carbons, the minor cost of calculated H2 was 0,16288 US$/kWh if glycerol is also utilized as heat sources and 0,17677 US$/kWh if electricity is utilized as heat sources. The range of considered tariff of glycerol was 0-0,1 US$/kWh (taking as basis LHV of H2) and the tariff of electricity is US$ 0,0867 US$/kWh, with demand cost of 12,49 US$/kW. The costs of electricity were obtained by Companhia Bandeirante, localized in São Paulo State. The differences among costs of hydrogen production utilizing glycerol and electricity as heat source was in a range between 0,3-5,8%. This technology in this moment is not mature. However, it allows the employment generation with the additional utilization of glycerol, especially with plants associated with biodiesel plants. The produced hydrogen and electricity could be utilized in own process, increasing its final performance.
Resumo:
Urban centers have a huge demand for electricity and the growing problem of the solid waste management generated by their population, a relevant social and administrative problem. The correct disposal of the municipal solid waste (MSW) generated in cities is one of the most complex engineering problems that involves logistics, safety, environmental and energetic aspects for its adequate management. Due to a national policy of solid wastes recently promulgated, Brazilian cities are evaluating the technical and economic feasibility of incinerating the non-recyclable waste. São José dos Campos, a São Paulo State industrialized city, is considering the composting of organic waste for biogas production and mass incineration of non-recyclable waste. This paper presents a waste-to-energy system based on the integration of gas turbines to a MSW incinerator for producing thermal and electric energy as an alternative solution for the solid waste disposal in São José dos Campos, SP. A technical and economic feasibility study for the hybrid combined cycle plant is presented and revealed to be attractive when carbon credit and waste tax are included in the project income. © 2013 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Neste trabalho foi realizada a análise econômica da produção de juvenis de tilápia-do-nilo em tanques-rede utilizando-se diferentes densidades de estocagem. O experimento foi desenvolvido em área aquícola, em delineamento de blocos casualizados, com quatro densidades de estocagem (100, 200, 300 e 400 peixes m-3), avaliadas com seis repetições, em dois períodos de criação: de março a abril de 2005 (52 dias - peso inicial de 43,08 ± 2,98 g e peso final de 262,14 ± 47,86 g) e de março a abril de 2006 (58 dias - peso inicial de 43,16 ± 5,34 g e peso final 314,24 ± 73,30 g). Foram avaliadas as seguintes variáveis econômicas: custo da ração mais custo do juvenil dividido pela biomassa, em R$ kg-1; porcentagem do custo da ração por quilo de peixe produzido sobre o preço de venda; porcentagem do custo do juvenil por quilo de peixe produzido sobre o preço de venda e; porcentagem dos custos da ração mais do juvenil por quilo de peixe produzido sobre o preço de venda. da menor densidade de estocagem (100) para a maior (400), ocorreu diminuição no ganho de peso diário e elevação do índice de conversão alimentar aparente, mas essa redução não comprometeu a taxa de sobrevivência. Entretanto, o ganho de biomassa aumentou com o adensamento de peixes. As maiores receitas líquidas foram obtidas nas densidades de estocagem de 100 e 200 peixes m-3. Os preços não remuneraram os custos operacionais (efetivo e total) em maiores densidades (300 e 400 peixes m-3). Os melhores resultados para a produção de juvenis de tilápia-do-nilo foram obtidos com densidades de até 200 peixes m-3.
Resumo:
Avaliaram-se os efeitos da utilização de ciclos alternados de restrição alimentar e realimentação no crescimento do pacu, durante o período de engorda, e a viabilidade desta prática na produção comercial da espécie. Juvenis foram distribuídos em três tanques e submetidos a diferentes manejos alimentares, constituindo os tratamentos: A (alimentado ad libitum), B (restrição alimentar de 4 semanas, realimentado por 9 semanas) e C (6 semanas de restrição alimentar, realimentado por 7 semanas), em um total de 13 semanas por ciclo (4 ciclos experimentais). No final de cada ciclo alimentar, 20 peixes de cada tratamento foram amostrados e os dados biométricos registrados. Os valores obtidos para peso, comprimento total e fator de condição (K) foram submetidos a ANOVA e as médias comparadas pelo teste de Duncan. Os resultados mostraram que o tratamento C é o mais indicado somente para outono/inverno, promovendo maior crescimento, menor custo com ração, baixa conversão alimentar e maior receita líquida parcial. Entretanto, durante as estações mais quentes do ano (primavera/verão) outros programas de alimentação devem ser testados, utilizando-se períodos mais curtos de restrição alimentar. Quando se tratou da produção anual, o tratamento A respondeu melhor em termos de biomassa produzida, apesar do maior gasto com alimentação, visto que, com o aumento da temperatura, o crescimento dos peixes dos demais tratamentos ficou prejudicado.
Resumo:
The aim of this study was to evaluate the nitrogen topdressing influence in common bean irrigated (winter-spring), in the first year of no tillage implementation. The experimental design was split-plot with three replications in randomized blocks. The plots were formed by three types of ground cover, corn-grain, corn-grain intercropped with Brachiaria ruziziensis and only B. ruziziensis. The subplots were formed by five doses of nitrogen topdressing (0, 40, 80, 120 and 160 kg ha(-1)), using urea as nitrogen source. It was determined the dry mass of residue present as ground cover, the full flowering time, the leaf nitrogen content, the 100 grains mass, the grain yield, the processing income, the chemical soil properties and economic analysis of common bean grain yield. It was found the common bean grain productivity in succession to corn-grain was positively influenced by nitrogen fertilization, showing it is economically viable only when given 160 kg ha(-1) of nitrogen and the intercropping corn-grain and B. ruziziensis use is the best option when the common bean is sown in succession.
Resumo:
Foram utilizadas 30 vacas da raça Canchim com 50 meses de idade e peso corporal médio de 471 kg, que receberam suplemento alimentar durante a estação seca de 1998, objetivando avaliar a precisão no desempenho estimado por diferentes sistemas de avaliação de dietas. Os suplementos, à base de silagem de milho, milho, polpa cítrica peletizada, farelo de algodão, farelo de soja e soja integral, seguiram as recomendações do Sistema de Proteína Metabolizável (MP); do Sistema de Proteína e Carboidratos Líquidos de Cornell (CNCPS); e do Sistema de Proteína Digestível no Intestino (PDI), para manutenção do peso corporal. A variação diária de peso corporal obtida não diferiu entre os tratamentos CNCPS, MP e PDI, com médias de 0,34; 0,33; e 0,19 kg/cab, respectivamente. Quando a produção de carne constituiu-se no objetivo único do sistema produtivo, a análise econômica revelou saldo de R$22,00; R$-44,73; e R$47,27/ha/ano, para os sistemas CNCPS, MP e PDI, respectivamente. Concluiu-se que os suplementos avaliados pelos sistemas proporcionaram resultados de desempenho animal compatíveis com os estimados.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Avaliaram-se consumo, desempenho, parâmetros plasmáticos e características de carcaça de 24 novilhos, 3/4 Simental 1/4 Nelore, com peso médio inicial de 370 kg. As dietas foram compostas por 55% de silagem de milho e diferentes fontes energéticas: milho (MI) e substituição parcial do milho pela casca de soja (CS) ou pelo farelo de gérmen de milho (FGM), tendo como fonte de proteína o farelo de girassol. O período de avaliação de consumo e ganho de peso foi de 49 dias. Foram realizadas amostragens de sangue para mensuração dos parâmetros plasmáticos: glicose, uréia, proteína total e albumina. As meia-carcaças direitas resfriadas foram utilizadas para medir a área de olho de lombo (AOL), a espessura de gordura (EG) e o comprimento de carcaça. As dietas não influenciaram os parâmetros plasmáticos. A média obtida para uréia plasmática foi elevada (26,1 mg/dL). As diferentes fontes energéticas não afetaram o ganho de peso e a conversão alimentar, com médias de 1,15 kg/dia e 9,17 kg de MS ingerida/kg de ganho. Não houve efeito sobre o rendimento de carcaça (52,8% peso final e 63,11% PCV), AOL (63,6 cm²) e EG (4,7 mm). O grão de milho pode ser substituído parcialmente pela casca de soja e pelo farelo de gérmen de milho, em dietas para novilhos em confinamento, sem afetar o desempenho e as características de carcaça, permitindo que a escolha entre esses ingredientes seja realizada pela análise econômica.
Resumo:
O processo constante de avaliação técnica e econômica dos sistemas de colheita de madeira é intrínseco às empresas florestais, devido ao fato de corresponder a uma fase de suma importância que despende elevado investimento financeiro. No experimento deste trabalho, estudaram-se o rendimento operacional e custos operacionais e de produção do processador florestal Hypro. A análise técnica englobou estudos de tempos e movimentos pelo método de tempo contínuo. O rendimento operacional foi determinado através do volume, em metros cúbicos de madeira processada. A análise econômica incorporou os parâmetros do custo operacional, custo de processamento da madeira e rendimento energético. A análise dos dados evidenciou que o rendimento operacional por hora efetiva de trabalho foi de 38 árvores e, em metros cúbicos sem casca por hora efetiva de trabalho, de 11,68 m³ h-1, com custo de processamento de madeira sem casca de US$ 6.85 por metro cúbico.
Resumo:
Among the several variables that influence timber harvesting is the slope, which influences the productivity of forest machines. In this experiment the harvester was evaluated technically and economically while cutting and processing eucalyptus activity on different slope classes. The technical analysis included a study of time and movements by the method of continuous time; productivity was determined by the volume in cubic meters of wood processing. The economic analysis included the parameters of operational cost, production cost and energy consumption. The analysis of the data showed that productivity decreased according to the increase of the percent slope inclination, resulting in an effective work hour productivity increase from 18.72 to 39.71 m(3)sc, with a mean of operating cost of US$ 78.78 per work hour.
Resumo:
A avicultura de corte constitui-se numa importante atividade econômica no estado do Paraná e, como qualquer outra, está sujeita a riscos. Objetivou-se, neste trabalho, proceder à análise econômica da produção integrada de frango de corte, avaliando os riscos, considerando os sistemas climatizado, automático e manual. Utilizando-se as variáveis de risco: preço do produto, produtividade e custos de produção foi possível identificar as principais fontes de risco e sua influência na renda líquida. Os resultados apontaram que a rentabilidade da atividade é mais sensível aos componentes da receita do que de custos, sendo o preço a variável de maior sensibilidade. Verificou-se também que o aviário climatizado apresenta possibilidades de prejuízo mais alto para menores níveis de risco e, à medida que o risco aumenta, oferece retornos mais interessantes, em comparação aos sistemas automático e manual. O sistema manual foi o que passou a apresentar retorno a níveis de risco maior (acima de 25%).