299 resultados para Embryo chilling
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Since 2004, Brazil has been the leading exporter of chicken. Because of the importance of this sector in the Brazilian economy, food safety must be ensured by control and monitoring of the production stages susceptible to contamination, such as the chilling process. The goal of this study was to evaluate changes in microbial levels on chicken carcasses and in chilling water after immersion in a chilling system for 8 and 16 h during commercial processing. An objective of the study was to encourage discussion regarding the Brazilian Ministry of Agriculture Livestock and Food Supply regulation that requires chicken processors to completely empty, clean, and disinfect each tank of the chilling system after every 8-h shift. Before and after immersion carcasses were collected and analyzed for mesophilic bacteria, Enterobacteriaceae, conforms, and Escherichia coli. Samples of water from the chilling system were also analyzed for residual free chlorine. The results do not support required emptying of the chiller tank after 8 h; these tanks could be emptied after 16 h. The results for all carcasses tested at the 8- and 16-h time points indicated no significant differences in the microbiological indicators evaluated. These data provide both technical and scientific support for discussing changes in federal law regarding the management of immersion chilling water systems used as part of the poultry processing line.
Resumo:
The objective of this study was to evaluate the factors that may affect conception rates (CR) following artificial insemination (AI) or embryo transfer (ET) in lactating Holstein cows. Estrous cycling cows producing 33.1 +/- 7.2 kg of milk/d received PGF(2 alpha) injections and were assigned randomly to 1 of 2 groups (AI or ET). Cows detected in estrus (n = 387) between 48 and 96 h after the PGF2a injection received AI (n = 227) 12 h after detection of estrus or ET (n = 160) 6 to 8 d later (1 fresh embryo, grade 1 or 2, produced from nonlactating cows). Pregnancy was diagnosed at 28 and 42 d after estrus, and embryonic loss occurred when a cow was pregnant on d 28 but not pregnant on d 42. Ovulation, conception, and embryonic loss were analyzed by a logistic model to evaluate the effects of covariates [days in milk (DIM), milk yield, body temperature (BT) at d 7 and 14 post-AI, and serum concentration of progesterone (P4) at d 7 and 14 post-AI] on the probability of success. The first analysis included all cows that were detected in estrus. The CR of AI and ET were different on d 28 (AI, 32.6% vs. ET, 49.4%) and 42 (AI, 29.1% vs. ET, 38.8%) and were negatively influenced by high BT (d 7) and DIM. The second analysis included only cows with a corpus luteum on d 7. Ovulation rate was 84.8% and was only negatively affected by DIM. Conception rates of AI and ET were different on d 28 (AI, 37.9% vs. ET, 59.4%) and 42 (AI, 33.8% vs. ET, 46.6%) and were negatively influenced by high BT (d 7). The third analysis included only ovulating cows that were 7 d postestrus. Conception rates of AI and ET were different on d 28 (AI, 37.5% vs. ET, 63.2%) and 42 (AI, 31.7% vs. ET, 51.7%) and were negatively influenced by high BT (d 7). There was a positive effect of serum concentration of P4 and a negative effect of milk production on the probability of conception for the AI group but not for the ET group. The fourth analysis was embryonic loss (AI, 10.8% vs. ET, 21.5%). The transfer of fresh embryos is an important tool to increase the probability of conception of lactating Holstein cows because it can bypass the negative effects of milk production and low P4 on the early embryo. The superiority of ET vs. AI is more evident in high-producing cows. High BT measured on d 7 had a negative effect on CR and embryonic retention.
Resumo:
The objective was to compare two protocols for synchronizing ovulation in lactating Holstein cows submitted to timed AI (TAI) or timed ET (TET). Within each farm (n = 8), cows (n = 883; mean +/- SEM 166.24 +/- 3.27 d postpartum, yielding 36.8 +/- 0.34 kg of milk/d) were randomly assigned to receive either: 1) an intravaginal progesterone insert (CIDR (R)) with 1.9 g of progesterone + GnRH on Day -10, CIDR (R) withdrawal + PGF2 alpha on Day -3, and 1 mg estradiol cypionate on Day -2 (treatment GP-P-E; n(TAI) = 180; n(TET) = 260); or 2) a CIDR (R) insert + 2 mg estradiol benzoate on Day -10, PGF2 alpha on Day -3, CIDR (R) withdrawal + 1 mg estradiol cypionate on Day -2 (treatment EP-P-E; n(TAI) = 174; n(TET) = 269). Cows were subsequently randomly assigned to receive either TAT on Day 0 or TET on Day 7. Serum progesterone concentration on Day -3 was greater in GP-P-E than in EP-P-E (2.89 +/- 0.15 vs 2.29 +/- 0.15 ng/mL; P < 0.01), with no significant effect of group on serum progesterone on Day 7. Compared to cows submitted to TAI, those submitted to TET had greater pregnancy rates on Day 28 (44.0% [233/5291 vs 29.7% [105/354]; p < 0.001) and on Day 60 (37.6% [199/529] vs 26.5 [94/354]; P < 0.001). However, there were no effects of treatments (GP-P-E vs EP-P-E; P > 0.10) on synchronization (87.0% [383/440] vs 85.3% [378/443]), conception (TAI: 35.3% [55/156] vs 33.8% [50/148]; TET: 50.7% [115/227] vs 51.3% [118/230]) and pregnancy rates on Days 28 (TAT: 30.5% [55/180] vs 28.7% 150/174]; TET: 44.2% [115/260] vs 43.9% [118/2691) and 60 (TAI: 27.2% [49/80] vs 25.9% [45/174]; TET: 38.8% [101/260] vs 36.4% [98/269]). In conclusion, GP-P-E increased serum progesterone concentrations on Day -3, but rates of synchronization, conception, and pregnancy were not significantly different between cows submitted to GP-P-E and EP-P-E protocols, regardless of whether they were inseminated or received an embryo. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
The objective of experiment 1 was to evaluate the effects of treatments with human chorionic gonadotropin (hCG) or GnRH 7 d after induced ovulation on reproductive performance of lactating dairy cows submitted to timed artificial insemination (TAI) or timed embryo transfer (TET). A total of 834 potential breedings were used from 661 lactating Holstein cows (37.3 +/- 0.3 kg of milk/d). Cows had ovulation synchronized and were assigned randomly to receive TAI on d 0 or TET on d 7. Within each group, cows were assigned randomly to receive on d 7 no additional treatment (control; n(TAI) = 156; n(TET) = 126), a 100 mu g i.m. injection of GnRH (n(TAI) = 155; n(TET) = 124), or a 2,500 TU i.m. injection of hCG (ITA = 151; n(TET) = 122). Postbreeding treatment affected the percentages of pregnant cows at TET on d 28 (control: 38.1%; GnRH: 52.4%; hCG: 45.1%) and on d 60 (control: 32.5%; GnRH: 41.1%; hCG: 38.5%), but postbreeding treatment did not affect percentages of pregnant cows at TAT on d 28 (control: 30.1%; GnRH: 32.2%; hCG: 32.4%) or on d 60 (control: 25.6%; GnRH: 27.1%; hCG: 29.8%). The objective of experiment 2 was to evaluate the effect of a treatment with GnRH 7 d after TET on reproductive performance of lactating dairy cows that received a previous GnRH treatment at TET. A total of 285 potential breedings were used from 257 lactating Holstein cows (35.1 +/- 0.8 kg of milk/d). Cows had ovulation synchronized and were assigned for TET on d 7. Immediately after TET, all cows were treated with a 100 mu g i.m. injection of GnRH. on d 14, cows were assigned randomly to receive (G7-14; n = 147) or not (G7; n = 138) an additional injection of GnRH. Pregnancy diagnosis were performed on d 28 and 60. The additional treatment with GnRH on d 14 did not affect the percentages of pregnant cows on d 28 (G7: 48.5%; G7-14: 42.9%) or on d 60 (G7: 39.8%; G7-14: 37.4%). In conclusion, treatment with GnRH or hCG 7 d after induced ovulation increased conception rates in lactating dairy cows submitted to TET, but not in cows submitted to TAI. Moreover, treatment with GnRH 7 d after TET did not enhance reproductive performance of lactating dairy cows that received a previous GnRH treatment at TET.
Resumo:
Mammalian oocytes can undergo spontaneous meiotic maturation when they are liberated from their follicles and cultured in vitro; however, the zona pellucida (ZP) becomes resistant to chymotrypsin digestion, or hardens, when spontaneous maturation occurs in serum-free medium. Schroeder et al. [Biol. Reprod. 43 (1990) 891] described that fetuin, a component of fetal calf serum (FCS), inhibits ZP hardening during oocyte maturation. The aim of this experiment was to study the effect of the presence of cumulus cells and addition of hormones to maturation media on bovine zona hardening and embryo development in medium with and without fetuin. In Experiment 1, different concentrations of fetuin were added to the maturation medium. The time necessary for digestion of 50% of the ZP (d50) was not different when oocytes were matured in presence of 10% FCS, 1 mg/ml polyvinyl alcohol (PVA), or 4, 1 and 0.25 mg/ml of fetuin; cleavage rates were also similar. However, significantly more blastocysts (P < 0.05) were formed when FCS was used compared to PVA and 0.25 mg/ml of fetuin. In Experiment 11, we examined the influence of the presence of cumulus cells and hormones during the maturation of oocytes in media with PVA, BSA, FCS and fetuin. The d50 was significantly higher (P < 0.05) when oocytes were matured in presence of cumulus cells. The cleavage rate of cumulus-intact oocytes was similar for all groups. However, when oocytes were partially stripped before maturation, the cleavage rate was significantly higher (P < 0.05) when FCS or fetuin was used. In both stripped and non-stripped groups, significantly more blastocysts (P < 0.05) were formed when oocytes were matured with FCS compared to BSA and PVA. These results indicate that zona hardening, as described for mouse and human oocytes, does not have a large effect on bovine cumulus-intact oocytes. Apparently fetuin can be used as a substitute for FCS during bovine oocyte maturation, since it leads to similar developmental rates as FCS in intact and partially stripped oocytes. (C) 2002 Published by Elsevier B.V. B.V.
Resumo:
Equine pituitary extract (EPE), has been reported to induce multiple ovulation in mares, however ovulation rates are poor in comparison to those obtained in other species. Attempts to improve the effectiveness of EPE for induction of superovulation in cyclic mares has focused on daily frequency of EPE treatment. Two experiments were performed to compare the ovarian response of cyclic mares given EPE once or twice-daily. Mares were assigned to one of two treatment groups 6 to 8 days after ovulation: prostaglandin was given once and EPE (25 mg) was given once daily (Group 1) or twice daily (Group 2). In Experiment 1, more (P < 0.05) follicles
Resumo:
The use of equine FSH (eFSH) for inducing follicular development and ovulation in transitional mares was evaluated. Twenty-seven mares, from 3 to 15 years of age, were examined during the months of August and September 2004, in Brazil. Ultrasound evaluations were performed during 2 weeks before the start of the experiment to confirm transitional characteristics (no follicles larger than 25 mm and no corpus luteum [CL] present). After this period, as the mares obtained a follicle of at least 25 mm, they were assigned to one of two groups: (1) control group, untreated; (2) treated with 12.5 mg eFSH, 2 times per day, until at least half of all follicles larger than 30 mm had reached 35 mm. Follicular activity of all mares was monitored. When most of the follicles from treated mares and a single follicle from control mares acquired a preovulatory size ( : 35 mm), 2,500 IU human chorionic gonadotropin (hCG) was administered IV to induce ovulation. After hCG administration, the mares were inseminated with fresh semen every other day until ovulation. Ultrasound examinations continued until detection of the last ovulation, and embryo recovery was performed 7 to 8 days after ovulation. The mares of the treated group reached the first preovulatoiy follicle (4.1 +/- 1.0 vs 14.9 +/- 10.8 days) and ovulated before untreated mares (6.6 +/- 1.2 vs 18.0 +/- 11.1 days; P <.05). All mares were treated with prostaglandin F-2 alpha (PGF(2 alpha)), on the day of embryo flushing. Three superovulated mares did not cycle immediately after PGF(2 alpha), treatment, and consequently had a longer interovulatory interval (22.4 vs 10.9 days, P < 0.05). The mean period of treatment was 4.79 1.07 days and 85.71% of mares had multiple ovulations. The number of ovulations (5.6 vs 1.0) and embryos (2.0 vs 0.7) per mare were higher (P < 0.05) for treated mares than control mares. In conclusion, treatment with eFSH was effective in hastening the onset of the breeding season, inducing multiple ovulations, and increasing embryo production in transitional mares. This is the first report showing the use of FSH treatment to recover embryos from the first cycle of the year.
Resumo:
Data on fertilisation and embryo quality in dairy cattle are presented and the main factors responsible for the low fertility of single-ovulating lactating cows and embryo yield in superovulated dairy cattle are highlighted. During the past 50 years, the fertility in high-producing lactating dairy cattle has decreased as milk production increased. Recent data show conception rates to first service to be approximately 32% in lactating cows, whereas in heifers it has remained above 50%. Fertilisation does not seem to be the principal factor responsible for the low fertility in single-ovulating cows, because it has remained above 80%. Conversely, early embryonic development is impaired in high-producing dairy cows, as observed by most embryonic losses occurring during the first week after fertilisation. However, in superovulated dairy cattle, although fertilisation failure is more pronounced, averaging approximately 45%, the percentage of fertilised embryos viable at 1 week is quite high (>70%). Among the multifactorial causes of low fertility in lactating dairy cows, high feed intake associated with low concentrations of circulating steroids may contribute substantially to reduced embryo quality. Fertilisation failure in superovulated cattle may be a consequence of inappropriate gamete transport due to hormonal imbalances.