88 resultados para Embodied CO2 emissions
Resumo:
The impact of tillage systems on soil CO2 emission is a complex issue as different soil types are managed in various ways, from no-till to intensive land preparation. In southern Brazil, the adoption of a new management option has arisen most recently, with no-tillage as well as no burning of crops residues left on soil surface after harvesting, especially in sugar cane areas. Although such practice has helped to restore soil carbon, the tillage impact on soil carbon loss in such areas has not been widely investigated. This study evaluated the effect of moldboard plowing followed by offset disk harrow and chisel plowing on clay oxisolCO(2) emission in a sugar cane field treated with no-tillage and high crop residues input in the last 6 years. Emissions after tillage were compared to undisturbed soil CO2 emissions during a 4-week period by using an LI-6400 system coupled to a portable soil chamber. Conventional tillage caused the highest emission during almost the whole period studied, except for the efflux immediately following tillage, when the reduced plot produced the highest peak. The lowest emissions were recorded 7 days after tillage, at the end of a dry period, when soil moisture reached its lowest rate. A linear regression between Soil CO2 effluxes and soil moisture in the no-till and conventional plots corroborate the fact that moisture, and not soil temperature, was a controlling factor. Total soil CO2 loss was huge and indicates that the adoption of reduced tillage would considerably decrease soil carbon dioxide emission in our region, particularly during the summer season and when growers leave large amounts of crop residues on the soil surface. Although it is known that crop residues are important for restoring soil carbon, our result indicates that an amount equivalent to approximately 30% of annual crop carbon residues could be transferred to the atmosphere, in a period of 4 weeks only, when conventional tillage is applied on no-tilled soils. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Soil tillage and other methods of soil management may influence CO 2 emissions because they accelerate the mineralization of organic carbon in the soil. This study aimed to quantify the CO2 emissions under conventional tillage (CT), minimum tillage (MT) and reduced tillage (RT) during the renovation of sugarcane fields in southern Brazil. The experiment was performed on an Oxisol in the sugarcane-planting area with mechanical harvesting. An undisturbed or no-till (NT) plot was left as a control treatment. The CO2 emissions results indicated a significant interaction (p < 0.001) between tillage method and time after tillage. By quantifying the accumulated emissions over the 44 days after soil tillage, we observed that tillage-induced emissions were higher after the CT system than the RT and MT systems, reaching 350.09 g m-2 of CO2 in CT, and 51.7 and 5.5 g m-2 of CO2 in RT and MT respectively. The amount of C lost in the form of CO2 due to soil tillage practices was significant and comparable to the estimated value of potential annual C accumulation resulting from changes in the harvesting system in Brazil from burning of plant residues to the adoption of green cane harvesting. The CO 2 emissions in the CT system could respond to a loss of 80% of the potential soil C accumulated over one year as result of the adoption of mechanized sugarcane harvesting. Meanwhile, soil tillage during the renewal of the sugar plantation using RT and MT methods would result in low impact, with losses of 12% and 2% of the C that could potentially be accumulated during a one year period. © 2013 IOP Publishing Ltd.
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Pós-graduação em Física - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The soil is one of the main C pools in terrestrial ecosystem, capable of storing significant C amounts. Therefore, understanding the factors that contribute to the loss of CO2 from agricultural soils is critical to determine strategies reducing emissions of this gas and help mitigate the greenhouse effect. The purpose of this study was to investigate the effect of soil tillage and sugarcane trash on CO2 emissions, temperature and soil moisture during sugarcane (re)planting, over a study period of 15 days. The following managements were evaluated: no-tillage with crop residues left on the soil surface (NTR); without tillage and without residue (NTNR) and tillage with no residue (TNR). The average soil CO2 emission (FCO2) was lowest in NTR (2.16 µmol m-2 s-1), compared to the managements NTNR (2.90 µmol m-2 s-1) and TNR (3.22 µmol m-2 s-1), indicating that the higher moisture and lower soil temperature variations observed in NTR were responsible for this decrease. During the study period, the lowest daily average FCO2 was recorded in NTR (1.28 µmol m-2 s-1), and the highest in TNR (6.08 µmol m-2 s-1), after rainfall. A loss of soil CO2 was lowest from the management NTR (367 kg ha-1 of CO2-C) and differing significantly (p<0.05) from the managements NTNR (502 kg ha-1 of CO2-C) and TNR (535 kg ha-1 of CO2-C). Soil moisture was the variable that differed most managements and was positively correlated (r = 0.55, p<0.05) with the temporal variations of CO2 emission from NTR and TNR. In addition, the soil temperature differed (p<0.05) only in management NTR (24 °C) compared to NTNR (26 °C) and TNR (26.5 °C), suggesting that under the conditions of this study, sugarcane trash left on the surface induced an average rise in the of soil temperature of 2 ºC.
Resumo:
The aim of this study was to evaluate CO2 emission, canopy characteristics and herbage accumulation in pastures of pensacola bahiagrass under frequencies of defoliation. The experiment was conducted at the Universidade Estadual Paulista Julio de Mesquita Filho, Faculty of Agrarian Sciences and Veterinary of UNESP, Jaboticabal, São Paulo, Brasil. The experimental period was from May 3rd to July 26th 2012. The experimental area comprised 28 m² of pensacola bahiagrass (Paspalum notatum Flügge), divided into 10 plots for allocation of treatment (frequencies of defoliation = 2 or 4 weeks). The following variables were studied: canopy height, light interception, leaf area index, herbage accumulation, tiller density, CO2 emissions, soil temperature and moisture. The frequencies of defoliation in the months of May, June and July slightly affect pensacola bahiagrass characteristics. CO2, soil temperature and moisture are more associated to environmental conditions (months of evaluation) than to the frequencies of defoliation imposed to the canopies.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Hot spots, hot moments, and spatio-temporal controls on soil CO2 efflux in a water-limited ecosystem
Resumo:
Soil CO2 efflux is the primary source of CO2 emissions from terrestrial ecosystems to the atmosphere. The rates of this flux vary in time and space producing hot moments (sudden temporal high fluxes) and hot spots (spatially defined high fluxes), but these high reaction rates are rarely studied in conjunction with each other. We studied temporal and spatial variation of soil CO2 efflux in a water-limited Mediterranean ecosystem in Baja California, Mexico. Soil CO2 efflux increased 522% during a hot moment after rewetting of soils following dry summer months. Monthly precipitation was the primary driver of the seasonal trend of soil CO2 efflux (including the hot moment) and through changes in soil volumetric water content (VWC) it influenced the relationship between CO2 efflux and soil temperature. Geostatistical analyses showed that the spatial dependence of soil CO2 efflux changed between two contrasting seasons (dry and wet). During the dry season high soil VWC was associated with high soil CO2 efflux, and during the wet season the emergence of a hot spot of soil CO2 efflux was associated with higher root biomass and leaf area index. These results suggest that sampling designs should accommodate for changes in spatial dependence of measured variables. The spatio-temporal relationships identified in this study are arguably different from temperate ecosystems where the majority of soil CO2 efflux research has been done. This study provides evidence of the complexity of the mechanisms controlling the spatio-temporal variability of soil CO2 efflux in water-limited ecosystems. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The process of steel production emits a large quantity of greenhouse gases, specifically carbon dioxide (CO2), and the reduction of such emissions is one of the main challenges for the industry in the 21st. Century. To quantify these emissions, the Worldsteel Association (association of the 170 large steel manufacturers of the world) published a methodology (CO2 Emission Data Collection) for calculation and comparison of CO2 emissions among its members. After that, in 2010, this methodology became an ISO (International Organization for Standardization) norm. Today, the calculation of the CO2 emissions in steel making companies follow the ISO 14404-1 for units with blast furnaces and the ISO 14404-2 for units with electric furnaces. In the last years, new technologies were and continue to be developed for the steel making sector aiming at energetic improvements and greenhouse gas reductions (mainly CO2) by the several processes involved in the production of steel. This work had the objective of producing a tool to calculate the CO2 emissions for the steel making sector. An Excel spreadsheet was developed to calculate the emission intensities of CO2 of a steel plant, the Usina Presidente Vargas, of the Companhia Siderúrgica Nacional (CSN). The spreadsheet furnishes results of CO2 emissions and energetic fluxes, and simulates the benefits that some of the new technologies can give to the company. The spreadsheet calculates the emissions in two ways: a) based on the carbon fluxes that enter the unit, and b) based on the emissions of each specific process within the unit (coking, sinterization, blast furnace, among others)