83 resultados para Electron transfer ability


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Biotecnologia - IQ

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accumulating evidence points to relationships between increased production of reactive oxygen or decreased antioxidant protection in schizophrenic patients. Chlorpromazine (CPZ), which remains a benchmark treatment for people with schizophrenia, has been described as a pro-oxidant compound. Because the antioxidant compound melatonin exerts protective effects against CPZ-induced liver disease in rats, in this investigation, our main objective was to study the effect of CPZ as a co-catalyst of peroxidase-mediated oxidation of melatonin. We found that melatonin was an excellent reductor agent of preformed CPZ cation radical (CPZ(center dot+)). The addition of CPZ during the horseradish peroxidase (HRP)-catalyzed oxidation of melatonin provoked a significant increase in the rate of oxidation and production of N-1-acetyl-N-2-formyl-5-methoxykynuramine (AFMK). Similar results were obtained using myeloperoxidase. The effect of CPZ on melatonin oxidation was rather higher at alkaline pH. At pH 9.0, the efficiency of oxidation of melatonin was 15 times higher and the production of AFMK was 30 times higher as compared with the assays in the absence of CPZ. We suggest that CPZ is able to exacerbate the rate of oxidation of melatonin by an electron transfer mechanism where CPZ(center dot+), generated during the peroxidase-catalyzed oxidation, is able to efficiently oxidize melatonin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The [Mn(4)(IV)O(5)(terpy)(4)(H(2)O)(2)](6+) complex shows great potential for electrode modification by electropolymerization using cyclic voltammetry. The electropolymerization mechanism was based on the electron transfer between dx(2)-y(2) orbitals of the metallic center and p pi orbital of the ligand.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In an attempt to optimize a high yield, high efficiency artificial photosynthetic protein we have discovered unique energy and spatial architecture limits which apply to all light-activated photosynthetic systems. We have generated an analytical solution for the time behavior of the core three cofactor charge separation element in photosynthesis, the photosynthetic cofactor triad, and explored the functional consequences of its makeup including its architecture, the reduction potentials of its components, and the absorption energy of the light absorbing primary-donor cofactor. Our primary findings are two: First, that a high efficiency, high yield triad will have an absorption frequency more than twice the reorganization energy of the first electron transfer, and second, that the relative distance of the acceptor and the donor from the primary-donor plays an important role in determining the yields, with the highest efficiency, highest yield architecture having the light absorbing cofactor closest to the acceptor. Surprisingly, despite the increased complexity found in natural solar energy conversion proteins, we find that the construction of this central triad in natural systems matches these predictions. Our analysis thus not only suggests explanations for some aspects of the makeup of natural photosynthetic systems, it also provides specific design criteria necessary to create high efficiency, high yield artificial protein-based triads.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glassy carbon electrodes (GCE) were modified with poly(glutamic acid) acid films prepared using three different procedures: glutamic acid monomer electropolymerization (MONO), evaporation of poly(glutamic acid) (PAG) and evaporation of a mixture of poly(glutamic acid)/glutaraldehyde (PAG/GLU). All three films showed good adherence to the electrode surface. The performance of the modified GCE was investigated by cyclic voltammetry and differential pulse voltammetry, and the films were characterized by atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS). The three poly(glutamic acid) modified GCEs were tested using the electrochemical oxidation of ascorbic acid and a decrease of the overpotential and the improvement of the oxidation peak current was observed. The PAG modified electrode surfaces gave the best results. AFM morphological images showed a polymeric network film formed by well-defined nanofibres that may undergo extensive swelling in solution, allowing an easier electron transfer and higher oxidation peaks. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work describes the preparation and characterization of polyelectrolyte coatings of poly-L-lysine (PLL) to modify a glassy carbon electrode and its application to the pre-accumulation of nitroprusside (NP). The effects of the coating on the electrochemical reduction of NP were investigated. The performance of the modified electrode indicates that the drug can be immobilized by electrostatic interaction and the voltammetric signal monitored at all pH values in the range of 2-12. The strong interaction between NP and PLL stabilizes the complex on the electrode surface and minimizes the chemical reaction of lost CN- ions as a subsequent reaction of electron transfer, which could improve the action mechanism of NP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The oxidation of a reactive dye, Reactive Blue 4, RB4, (C.I. 61205), widely used in the textile industries to color natural fibers, was studied by electrochemical techniques. The oxidation on glassy carbon electrode and reticulated vitreous carbon electrode occurs in only one step at 2.0 < PH < 12 involving a two-electron transfer to the amine group leading to the imide derivative. Dye solution was not decolorized effectively in this electrolysis process. Nevertheless, the oxidation of this dye on Ti/SnO2/SbOx (3% mol)/RuO2 (1% mol) electrode showed 100% of decolorization and 60% of total organic carbon removal in Na2SO4 0.2 M at PH 2.2 and potential of +2.4 V. Experiments on degradation photoelectrocatalytic were also carried out for RB4 degradation in Na2SO4 0.1 K PH 12, using a Ti/TiO2 photoanode biased at +1.0 V and UV light. After 1 h of electrolysis the results indicated total color removal and 37% of mineralization. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The oxidation of a reactive dye, Cibacron Blue F3GA, CB, (C.I. 61211), widely used in the textile industries to color natural fibers, was studied by electrochemical techniques. The oxidation on glassy carbon electrode occurs in two steps at 2.0 < pH < 10 involving one electron transfer each to the amine group leading to the imide derivative. Stable films of poly-L-lysine (PLL) in the presence of glutaraldehyde (GA) 97.5%:2.5% on glassy carbon electrode can be used to detect low levels of dye using its oxidation peak at +0.75V by voltammetry. Linear calibration graphs were obtained for the CB reactive dye, from 1.0 X 10(-6) to 1.0 X 10(-5) mol L-1 in B-R buffer, pH 2.0, using a pre-concentration off-line during 10 min. The detection limit (3 sigma/slope) was calculated to be 4.5 X 10(-8) mol L-1. Films of PLL can readily be applied for the determination of CB dye bearing aminoanthraquinone as chromophore and chlorotriazinyl as reactive group at concentrations at least 100 times lesser than using a glassy carbon electrode without modification. The method described was applied for the determination of CB dye in tap water and raw water collected from the municipal treatment plant with a recovery of 89.2% +/- 5.4 and 88.0% +/- 6.5, respectively. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electrochemical reduction of serine, glycine, and leucine protected by the 4-nitrobenzenesulfonyl, group in N,N-dimethylformamide at mercury cathode occurs at two steps. The first one at -0.8 V vs. SCE, after a one-electron transfer, leads the anion radical formation that dimerizes and adsorbs at electrode. In the second step at -1.4 V, an instable dianion forms which then cleaves. The mechanism is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electrochemical reduction of benzenesulfinic, p-toluenesulfinic, and p-nitrobenzenesulfinic acids was studied in dimethylsulfoxide solutions. From cyclic voltammetry experiments, a chemical reaction following the first electron transfer was detected during the reduction process. A cyclic voltammetry technique using ultramicroelectrodes has provided kinetic parameters for the electron-transfer steps, from which it was possible to observe the influence of the ring substituent on the electrochemical reduction. The mechanism of the electroreduction of aromatic sulfinic acids in dimethylsulfoxide depends upon the nucleophilic attack of the radical anion produced on the starting compound during the reduction processes.