144 resultados para Electrode contacts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accumulation voltammetry of mercury(II) was investigated at a carbon paste electrode chemically modified with silica gel functionalized with 2,5-dimercapto-1,3,4-thiadiazole (DTTPSG-CPE). The repetitive cyclic voltammogram of mercury(II) solution in the potential range -0.2 to +0.8 V (vs. Ag/AgCl), (0.02 mol L-1 KNO3; nu=20 mV s(-1)) show two peaks one at about 0.0 V and other at 0.31 V. However, the cathodic wave peak, around 0.0 V, is irregular and changes its form in each cycle. This peak at about 0.0 V is the reduction current for mercury(II) accumulated in the DTTPSG-CPE. The anodic wave peak at 0.31 V is well-defined and does not change during the cycles. The resultant material was characterized by cyclic and differential pulse anodic stripping voltammetry performed with the electrode in differents supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, cleaning solution, possible interferences and other variables. The precision for six determinations (n=6) of 0.05 and 0.20 mg (L)-(1) Hg(II) was 2.8 and 2.2% (relative standard deviation), respectively. The method was satisfactory and used to determine the concentration of mercury(II) in natural waters contaminated by this metal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a methodology for iron determination in fuel ethanol using a modified carbon paste electrode with 1.10 fenantroline/nafion. The electrochemical parameters were optimized for the proposed system and the voltammetric technique of square wave was employed for iron determination. An accumulation time of 5 minutes, such as a 100 mV of pulse magnitude (E(sw)) and frequency (f) of 25 Hz were used as optimized experimental conditions. The modified carbon paste electrode presented linear dependence of amperometric signal with iron concentration in a work range from 6.0x10(-6) until 2.0x10(-5) mol L(-1) of iron, exhibiting a linear correlation coefficient of 0.9884, a detection limit of 2.4 x10(-6) mol L(-1) (n = 3) and amperometric sensibility of 4.5x10(5) mu A/mol L(-1). Analytical curve method was used for iron determination at a commercial fuel sample. Flame atomic absorption spectroscopy was employed as comparative technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoelectrochemical degradation of p-nitrophenol (PNP) was investigated using titanium dioxide thin-film photoelectrode. The effects of different supporting electrolytes, pH, applied potential and PNP concentration were examined and discussed. Complete photodegradation was obtained in perchlorate medium at pH 2 when the photoanode was biased at +1.0 V (versus SCE) during a 3-h experiment. Under these conditions, carbon removal of approximately 60% was achieved. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica (SiAt-SPCPE) was applied to Ni2+ determination in commercial ethanol fuel samples. The proposed method comprised four steps: (1) Ni2+ preconcentration at open circuit potential directly in the ethanol fuel sample, (2) transference of the electrode to an electrochemical cell containing DMG, (3) differential pulse voltammogram registering and (4) surface regeneration by polishing the electrode. The proposed method combines the high Ni2+ adsorption capacity presented by 2-aminothiazole organofunctionalized silica with the electrochemical properties of the Ni(DMG)2 complex, whose electrochemical reduction provides the analytical signal.All experimental parameters involved in the proposed method were optimized. Using a preconcentration time of 20 min, it was obtained a linear range from 7.5 x 10(-9) to 1.0 x 10(-6) mol L-1 with detection limit of 2.0 x 10(-9) mol L-1. Recovery values between 96.5 and 102.4% were obtained for commercial samples spiked with 1.0 mu mol L-1 Ni2+ and the developed electrode was totally stable in ethanolic solutions. The contents of Ni2+ found in the commercial samples using the proposed method were compared to those obtained by graphite furnace atomic absorption spectroscopy by using the F- and t-test. Neither the F- nor t-values exceeded the critical values at 95% confidence level, confirming that there are not statistical differences between the results obtained by both methods. These results indicate that the developed electrode can be successfully employed to reliable Ni2+ determination in commercial ethanol fuel samples without any sample pretreatment or dilution step. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid paraffin-based carbon paste electrodes modified with 2-aminothiazole organofunctionalized silica have been applied to the anodic stripping determination of copper ions in ethanol fuel samples without any sample treatment. The proposed method comprised four steps: (1) copper ions preconcentration at open circuit potential directly in the ethanol fuel sample; (2) exchange of the solution and immediate cathodic reduction of the absorbate at controlled potential; (3) differential pulse anodic stripping voltammetry; (4) electrochemical surface regeneration by applying a positive potential in acid media. Factors affecting the preconcentration, reduction and stripping steps were investigated and the optimum conditions were employed to develop the analytical procedure. Using a preconcentration time of 20 min and reduction time of 120 s at -0.3 V versus Ag/AgCl(sat) a linear range from 7.5 x 10(-8) to 2.5 x 10(-6) mol L(-1) with detection limit of 3.1 x 10(-8) mol L(-1) was obtained. Interference studies have shown a decrease in the interference effect according to the sequence: Ni > Zn > Cd > Pb > Fe. However, the interference effects of these ions have not forbidden the application of the proposed method. Recovery values between 98.8 and 102.3% were obtained for synthetic samples spiked with known amounts of Cu(2+) and interfering metallic ions. The developed electrode was successfully applied to the determination of Cu(2+) in commercial ethanol fuel samples. The results were compared to those obtained by flame atomic absorption spectroscopy by using the F-test and t-test. Neither F-value nor t-value have exceeded the critical values at 95% confidence level, confirming that there are no significant differences between the results obtained by both methods. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical redox behavior of usnic acid, mainly known for its antibiotic activity, has been investigated using cyclic, differential pulse and square wave voltammetry in aqueous electrolyte. These studies were carried out by solid state voltammetry with the solid mechanically attached on the surface of a glassy carbon electrode and at different pH values. Usnic acid did not present any reduction reaction. The pH-dependent electrochemical oxidation occurs in three steps, one electron and one proton irreversible processes, assigned to each of the hydroxyl groups in the molecule. Adsorption of the non-electroactive oxidation product was also observed, blocking the electrode surface. An oxidation mechanism was proposed and electroanalytical methodology was developed to determine usnic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of 2-mercaptobenzothiazole (MBT) on the corrosion of copper in ethanol-water mixture with 0.01 mol dm(-3) HClO4 was investigated by linear sweep voltammetry and surface enhanced Raman scattering spectroscopy. The linear sweep voltammetry for the copper electrode in the presence of MBT shows one anodic process associated with the oxidation of MBT, which leads to the formation of a film on the electrode. This film inhibits the anodic copper dissolution and cathodic hydrogen evolution reaction. SERS studies indicated that MBT oxidizes and forms polymeric complexes involving copper ions and the ionized form of thiol. (C) 1997 Elsevier B.V. Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)