149 resultados para Einstein Condensation
Resumo:
We predict the loss of superfluidity in a Bose-Einstein condensate in an axially symmetric harmonic trap alone during resonant collective oscillations via a classical dynamical transition. The forced resonant oscillation can be initiated by (a) periodic modulation of the atomic scattering length with a frequency that equals twice the radial trapping frequency or multiples thereof, or by (b) periodic modulation of the radial trapping potential with a frequency that equals the radial trapping frequency or multiples thereof. Suggestion for future experiment is made. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The effects of a sudden increase and decrease of the interatomic interaction and harmonic-oscillator trapping potential on vortices in a quasi two-dimensional rotating Bose-Einstein condensate are investigated using the mean-field Gross-Pitaevskii equation. We also study the decay of vortices when the rotation of the condensate is suddenly stopped. Upon a free expansion of a rotating BEC with vortices the radius of the vortex core increases more rapidly than the radius of the condensate. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
We predict the loss of superfluidity in a Bose-Einstein condensate (BEC) trapped in a combined optical and axially-symmetric harmonic potentials during a resonant collective excitation initiated by a periodic modulation of the atomic scattering length a, when the modulation frequency equals twice the radial trapping frequency or multiples thereof. This classical dynamical transition is marked by a loss of superfluidity in the BEC and a subsequent destruction of the interference pattern upon free expansion. Suggestion for future experiment is made. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
A quantitative analysis of the critical number of attractive Bose-Einstein condensed atoms in asymmetric traps was studied. The Gross-Pitaevskii (GP) formalism for an atomic system with arbitrary nonspherically symmetric harmonic trap was also discussed. Characteristic limits were obtained for reductions from three to two and one dimensions from three to two and one dimensions, in perfect cylindrical symmetries as well as in deformed ones.
Resumo:
Recent experimental and theoretical advances in the creation and description of bright matter wave solitons are reviewed. Several aspects are taken into account, including the physics of soliton train formation as the nonlinear Fresnel diffraction, soliton-soliton interactions, and propagation in the presence of inhomogeneities. The generation of stable bright solitons by means of Feshbach resonance techniques is also discussed. © World Scientific Publishing Company.
Resumo:
By direct numerical simulation of the time-dependent Gross-Pitaevskii equation, we study different aspects of the localization of a noninteracting ideal Bose-Einstein condensate (BEC) in a one-dimensional bichromatic quasiperiodic optical-lattice potential. Such a quasiperiodic potential, used in a recent experiment on the localization of a BEC, can be formed by the superposition of two standing-wave polarized laser beams with different wavelengths. We investigate the effect of the variation of optical amplitudes and wavelengths on the localization of a noninteracting BEC. We also simulate the nonlinear dynamics when a harmonically trapped BEC is suddenly released into a quasiperiodic potential, as done experimentally in a laser speckle potential. We finally study the destruction of the localization in an interacting BEC due to the repulsion generated by a positive scattering length between the bosonic atoms. © 2009 The American Physical Society.
Resumo:
We report a diversity of stable gap solitons in a spin-orbit-coupled Bose-Einstein condensate subject to a spatially periodic Zeeman field. It is shown that the solitons can be classified by the main physical symmetries they obey, i.e., symmetries with respect to parity (P), time (T), and internal degree of freedom, i.e., spin (C), inversions. The conventional gap and gap-stripe solitons are obtained in lattices with different parameters. It is shown that solitons of the same type but obeying different symmetries can exist in the same lattice at different spatial locations. PT and CPT symmetric solitons have antiferromagnetic structure and are characterized, respectively, by nonzero and zero total magnetizations. © 2013 American Physical Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cooper pairing in two dimensions is analyzed with a set of renormalized equations to determine its binding energy for any fermion number density and all coupling assuming a,generic pairwise residual interfermion interaction. Also considered are Cooper pairs (CP's) with nonzero center-of-mass momentum (CMM) and their binding energy is expanded analytically in powers of the CMM up to quadratic terms. A Fermi-sea-dependent linear term in the CMM dominates the pair excitation energy in weak coupling (also called the BCS regime) while the more familiar quadratic term prevails in strong coupling (the Bose regime). The crossover, though strictly unrelated to BCS theory per se, is studied numerically as it is expected to play a central role in a model of superconductivity as a Bose-Einstein condensation of CPs where the transition temperature vanishes for all dimensionality d less than or equal to 2 for quadratic dispersion, but is nonzero for all d greater than or equal to 1 for linear dispersion.
Resumo:
Cooper pairing is studied in three dimensions to determine its binding energy for all coupling using a general separable interfermion interaction. Also considered are Cooper pairs (CPs) with nonzero center-of-mass momentum (CMM). A coupling-independent linear term in the CMM dominates the pair excitation energy in weak coupling and/or high fermion density, while the more familiar quadratic term prevails only in the extreme low-density (i.e., vacuum) limit for any nonzero coupling. The linear-to-quadratic crossover of the CP dispersion relation is analyzed numerically, and is expected to play a central role in a model of superconductivity (and superfluidity) simultaneously accommodating a Bardeen-Cooper-Schrieffer condensate as well as a Bose-Einstein condensate of CP bosons. (C) 2001 Elsevier B.V. B,V. All rights reserved.
Resumo:
The Cooper pair binding energy vs. center-of-mass-momentum dispersion relation for Bose-Einstein condensation studies of superconductivity is found in two dimensions for a renormalized attractive delta interaction. It crosses over smoothly from a linear to a quadratic form as coupling varies from weak to strong.
Resumo:
Using the mean-field time-dependent Gross-Pitaevskii equation we study the formation of a repulsive Bose-Einstein condensate on a combined optical and harmonic traps in two and three dimensions and subsequent generation of the interference pattern upon the removal of the combined traps as in the experiment by, Greiner et al. [Nature (London 415 (2002) 39]. For optical traps of moderate strength, interference pattern of 27 (9) prominent bright spots is found to be formed in three. (two) dimensions on a cubic (square) lattice in agreement with experiment. Similar interference pattern can also be formed upon removal of the optical lattice trap only. The pattern so formed can oscillate for a long time in the harmonic trap which can be observed experimentally. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The effects of trimer continuum resonances are considered in the three-body recombination rate of a Bose system at finite energies for large and negative two-body scattering lengths (a). The thermal average of the rate allows to apply our formula to Bose gases at ultra-low temperatures. We found a good quantitative description of the experimental three-body recombination length of cesium atoms to deeply bound molecules up to 500 nK. Consistent with the experimental data, the increase of the temperature moves the resonance peak of the three-body recombination rate to lower values of vertical bar a vertical bar exhibiting a saturation behavior. (C) 2006 Elsevier B.V. All rights reserved.