22 resultados para Earth-based plasters


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An alternative transfer strategy to send spacecrafts to stable orbits around the Lagrangian equilibrium points L4 and L5 based in trajectories derived from the periodic orbits around LI is presented in this work. The trajectories derived, called Trajectories G, are described and studied in terms of the initial generation requirements and their energy variations relative to the Earth through the passage by the lunar sphere of influence. Missions for insertion of spacecrafts in elliptic orbits around L4 and L5 are analysed considering the Restricted Three-Body Problem Earth- Moon-particle and the results are discussed starting from the thrust, time of flight and energy variation relative to the Earth. Copyright© (2012) by the International Astronautical Federation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fabrication and optical characterization of Tm3+/Yb3+ codoped PbO-GeO2 (PGO) pedestal-type waveguides are investigated in this work. It is important to mention that, to the best of authors' knowledge, the use of PGO pedestal-type waveguide has not been studied before. PGO thin films codoped with Tm3+ and Yb3+ were obtained through RF magnetron sputtering technique. The pedestal profile was obtained using conventional optical lithography procedures, followed by plasma etching and sputtering deposition. The profile of Tm3+/Yb3+ codoped PGO waveguides was observed by means of Scanning Electron Microscopy (SEM) measurements. Also the infrared and infrared-to-visible frequency upconversion luminescences of Tm3+ ions were measured exciting the samples with a cw 980 nm diode laser. Propagation losses around 11 dB/cm and 9 dB/cm were obtained at 630 and 1050 nm, respectively, for waveguides in the 20-100 μm width range. Single-mode propagation was observed for waveguides width up to 12 μm and 7 μm, at 1050 nm and 630 nm, respectively; larger waveguides width provided multi-mode propagation. The present results corroborate the possibility of using Tm3+/Yb3+ codoped PGO thin films as active waveguide for photonic applications. © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)