23 resultados para EFFICIENCY OPTIMIZATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing demand for steels with tighter compositional specifications led the Companhia Siderúrgica Nacional (CSN) to develop more efficient processes. To solve this problem this paper aims to identify the operational variables more impacting in the desulfurization process, specifically in torpedo car, as well as its causes and solutions. Then select and test, with laboratorial and industrial tests, desulfurizing agents based of CaC 2, CaO, CaCO3, and Mg to assess the cost per quantity of product desulfurized. The mixture with best results was not that one with highest content of CaC2. It is believed that this mixture showed better efficiency because of the increased agitation of the bath, produced by the releasing of gas from compound CaCO3 present in this mixture. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The strut-and-tie models are widely used in certain types of structural elements in reinforced concrete and in regions with complexity of the stress state, called regions D, where the distribution of deformations in the cross section is not linear. This paper introduces a numerical technique to determine the strut-and-tie models using a variant of the classical Evolutionary Structural Optimization, which is called Smooth Evolutionary Structural Optimization. The basic idea of this technique is to identify the numerical flow of stresses generated in the structure, setting out in more technical and rational members of strut-and-tie, and to quantify their value for future structural design. This paper presents an index performance based on the evolutionary topology optimization method for automatically generating optimal strut-and-tie models in reinforced concrete structures with stress constraints. In the proposed approach, the element with the lowest Von Mises stress is calculated for element removal, while a performance index is used to monitor the evolutionary optimization process. Thus, a comparative analysis of the strut-and-tie models for beams is proposed with the presentation of examples from the literature that demonstrates the efficiency of this formulation. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Making bioproducts available to the market requires finding appropriate processes for mass production and formulation of biological agents. This study aimed at evaluating the Bipolaris euphorbiae production in a solid medium (fermentation in solid substrate) and in a biphasic system (growth in a liquid medium followed by growth in a solid medium), as well as determining the processes for collecting and drying conidia, under laboratory conditions. The influence of the incubation period and inoculum quantity were also investigated. The conidia were dried by using an oven (30ºC, 35ºC, 40ºC, 45ºC, 50ºC, 55ºC and 60ºC), and laminar flow, continuous air flow and aseptic chamber at room temperature. Dry conidia were obtained by sieving and grinding in a ball mill, hammer mill or grain grinder. The conidia viability and sporulation efficiency were evaluated in the solid medium and in the biphasic system. For growth period, the best sporulation on solid medium was obtained after 10 days of incubation, reaching 8.3 x 10(7) conidia g-1 of substrate. The biphasic system did not increase the B. euphorbiae sporulation (4.5 x 10(7) conidia g-1 of substrate), after 14 days, and the amount of liquid inoculum used in this system was not an important factor for increasing its production. The continuous air flow and laminar flow preserved the conidial viability (94.6% and 99.1%, respectively), while promoting a great moisture loss (62.6% and 54.0%, respectively). All the grinding processes reduced the conidia germination (86.2%, 10.5% and 12%, respectively), while sieving allowed the collecting of powdered conidia with high viability (94.8%).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) are generally used to monitor hazardous events in inaccessible areas. Thus, on one hand, it is preferable to assure the adoption of the minimum transmission power in order to extend as much as possible the WSNs lifetime. On the other hand, it is crucial to guarantee that the transmitted data is correctly received by the other nodes. Thus, trading off power optimization and reliability insurance has become one of the most important concerns when dealing with modern systems based on WSN. In this context, we present a transmission power self-optimization (TPSO) technique for WSNs. The TPSO technique consists of an algorithm able to guarantee the connectivity as well as an equally high quality of service (QoS), concentrating on the WSNs efficiency (Ef), while optimizing the transmission power necessary for data communication. Thus, the main idea behind the proposed approach is to trade off WSNs Ef against energy consumption in an environment with inherent noise. Experimental results with different types of noise and electromagnetic interference (EMI) have been explored in order to demonstrate the effectiveness of the TPSO technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mathematical model is developed for an irreversible Brayton cycle with regeneration, inter-cooling and reheating. The irreversibility are from the thermal resistance in the heat exchangers, the pressure drops in pipes, the non-isentropic behavior in the adiabatic expansions and compressions and the heat leakage to the cold source. The cycle is optimized by maximizing the ecological function, which is achieved by the search for optimal values for the temperatures of the cycle and for the pressure ratios of the first stage compression and the first stage expansion. The advantages of using the regenerator, intercooler and reheater are presented by comparison with cycles that do not incorporate one or more of these processes. Optimization results are compared with those obtained by maximizing the power output and it is concluded that the point of maximum ecological function has major advantages with respect to the entropy generation rate and the thermal efficiency, at the cost of a small loss in power.