114 resultados para Dry turning
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This article presents a cooling system for cutting tool in turning based in a toolholder with cooling fluid flowing inside its body being that this fluid must necessarily be able to phase change due to heat generated from machining processes. In this way, the fluid evaporates just under the cutting tool allowing a heat transfer more efficient than if were used a fluid without phase change once the latent heat of evaporation is beneficial for removal heat. Following, the cooling fluid evaporated passes through a condenser located out of the toolholder where it is condensated and returns to the toolholder again and a new cycle is started. In this study, the R-123, a hydrochlorofluorocarbon (HCFC) fluid, was selected for the turning of a Cr-Ni-Nb-Mn-N austenitic steel of hard machinability. The machining tests were carried out under three different machining conditions: dry machining, external cutting fluid (conventional method), and with the toolholder proposed. As result, the developed system allows a surface roughness up to 10% better than dry machining and a tool life close to the conventional method, but 32% superior to dry machining; moreover, there are environmental and economics advantages once the cooling fluid is maintained in a loop circuit.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Considering the constant technological developments in the aeronautical, space, automotive, shipbuilding, nuclear and petrochemical fields, among others, the use of materials with high strength mechanical capabilities at high temperatures has been increasingly used. Among the materials that meet the mechanical strength and corrosion properties at temperatures around 815 degrees C one can find the nickel base alloy Pyromet 31V (SAE HEV8). This alloy is commonly applied in the manufacturing of high power diesel engines exhaust valves where it is required high resistance to sulphide, corrosion and good resistance to creep. However, due to its high mechanical strength and low thermal conductivity its machinability is made difficult, creating major challenges in the analysis of the best combinations among machining parameters and cutting tools to be used. Its low thermal conductivity results in a concentration of heat at high temperatures in the interfaces of workpiece-tool and tool-chip, consequently accelerating the tools wearing and increasing production costs. This work aimed to study the machinability, using the carbide coated and uncoated tools, of the hot-rolled Pyromet 31V alloy with hardness between 41.5 and 42.5 HRC. The nickel base alloy used consists essentially of the following components: 56.5% Ni, 22.5% Cr, 2,2% Ti, 0,04% C, 1,2% Al, 0.85% Nb and the rest of iron. Through the turning of this alloy we able to analyze the working mechanisms of wear on tools and evaluate the roughness provided on the cutting parameters used. The tests were performed on a CNC lathe machine using the coated carbide tool TNMG 160408-23 Class 1005 (ISO S15) and uncoated tools TNMG 160408-23 Class H13A (ISO S15). Cutting fluid was used so abundantly and cutting speeds were fixed in 75 and 90 m/min. to feed rates that ranged from 0.12, 0.15, 0.18 and 0.21 mm/rev, and cutting depth of 0.8mm. The results of the comparison between uncoated tools and coated ones presented a machined length of just 30% to the first in relation to the performance of the second. The coated tools has obtained its best result for both 75 and 90 m/min. with feed rate of 0.15 mm/rev, unlike the uncoated tool which obtained its better results to 0.12 mm/rev.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present study was performed to evaluate the microbiological characteristics of clinically health quarters submitted to milking and also to observe the distribution of contagious and environmental agents between brazilian dry and rainy seasons of the year. During nine months 734 quarters from 37 buffalo cows were submitted monthly to udder inspection, palpation and strip cup test before milking. 734 asseptic milk samples were inoculated in 10% ovine blood agar and in MacConkey agar media, then incubated for 72 hours at 37 C. Among the 580 isolated microrganisms, 182 (31,38%) were recovered from samples collected during the rainy season and 398 (68,62%) from the dry season. In the rainy period the most prevalent agents were: bacteria from the genus Corynebacterium sp (53,30%), Staphylococcus sp (19,78%) and Rhodococcus equi (13,74%). In the dry period, the commonest ones were: Corynebacterium sp (44,97%), Staphylococcus sp (18,84%) and Micrococcus sp (9,55%). The results demonstrated that the methods used to select health quarters in brazilian dairy buffalo farms allow the transmission of contagious bacteria during both seasons of the year, maintaining agents known to cause mainly subclinical inflammatory reactions that compromise cronically the physiology and production of the mammary gland.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study aimed to investigate the influence of calf genetic group on the performance of Nellore lactating cows. The variables studied included milk ingestion, pasture intake, calf weight gain and cow body weight. A total of 13 Nellore calves and 8 crossbred Simental x Nellore calves were used, all born from Nellore mothers. During the experimental period of 210 days, calves were weighted at birth and at 30-day intervals, whereas cows were weighed every 14 days. Milk intake was estimated using the weigh-suckle-weigh method. Pasture intake was determined 6, 12, and 24 weeks after birth by using chromic oxide as an external marker and indigestible acid detergent fiber as an internal marker. Average weight of crossbred calves was 10.1 kg and their milk intake was 0.42 kg higher than in purebred calves. There was no difference, however, in pasture intake between genetic groups. In Nellore cows, body weight and pasture consumption (9.2 kg of DM/cow/day) were not influenced by calf heterosis.
Resumo:
This study aimed to investigate the influence of calf genetic group on the performance of Nellore lactating cows. The variables studied included milk ingestion, pasture intake, calf weight gain and cow body weight. A total of 13 Nellore calves and 8 crossbred Simental × Nellore calves were used, all born from Nellore mothers. During the experimental period of 210 days, calves were weighted at birth and at 30-day intervals, whereas cows were weighed every 14 days. Milk intake was estimated using the weigh-suckle-weigh method. Pasture intake was determined 6, 12, and 24 weeks after birth by using chromic oxide as an external marker and indigestible acid detergent fiber as an internal marker. Average weight of crossbred calves was 10.1 kg and their milk intake was 0.42 kg higher than in purebred calves. There was no difference, however, in pasture intake between genetic groups. In Nellore cows, body weight and pasture consumption (9.2 kg of DM/cow/day) were not influenced by calf heterosis.