162 resultados para Dmso Reductase
Resumo:
1. In order to investigate the effect of aging on the erythrocyte glutathione system, total glutathione (GSH), glutathione reductase (GSH-red) and glutathione peroxidase (GSH-px) levels were measured in erythrocytes from 33 young (mean age = 30.5 +/- 9.7 years) and 28 aged (mean age = 68.9 +/- 11.4 years) healthy individuals.2. GSH was 3.5 +/- 1.8-mu-M/g Hb for the young group, a value significantly greater (P < 0.01) than 2.3 +/- 0.9-mu-M/g Hb found for the aged group. Similarly, GSH-red activity, 5.5 +/- 1.8 IU/g Hb, was higher (P < 0.05) for the young group than 3.4 +/- 0.9 IU/g Hb found for the aged group. The GSH-px activity levels for the young group, 21.1 +/- 5.9 IU/g Hb, were significantly greater (P < 0.01) than 12.0 +/- 3.3 IU/g Hb for the aged group. The lower activity detected in the aged group for all of these parameters of the glutathione redox system was not related to low levels of hematocrit or hemoglobin.3. There was no statistical difference in the activation coefficient (AC) of reductase (+FAD/-FAD) between groups, which seems to indicate that the lower activity of glutathione reductase observed in the aged group was not due to riboflavin deficiency.4. Additional information is required to determine the mechanisms controlling the glutathione redox system and its role in the aging process.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The authors evaluated the isoniazid acetylating phenotype and measured hematocrit, hemoglobin, glucose-6-phosphate dehydrogenase and glutathione reductase activities plus serum sulfadoxin levels in 39 patients with paracoccidioidomycosis (33 males and 6 females) aged 17 to 58 years. Twenty one (53.84%) of the patients presented a slow acetylating phenotype and 18 (46.16%) a fast acetylating phenotype. Glucose-6-phosphate-dehydrogenase (G6PD) activity was decreased in 5(23.80%) slow acetylators and in 4 (22.22%) fast acetylators. Glutathione reductase activity was decreased in 14 (66.66%) slow acetylators and in 12(66.66%) fast acetylators. Serum levels of free and total sulfadoxin were higher in slow acetylator (p _ 0.02). Analysis of the results permitted us to conclude that serum sulfadoxin levels are related to the acetylator phenotype. Furthermore, sulfadoxin levels were always above 50 μg/ml, a value considered therapeutic. Glutathione reductase deficiency observed in 66% of patients may be related to the intestinal malabsorption of nutrients, among them riboflavin, a FAD precursor vitamin, in patients with paracoceidioidomycosis.
Resumo:
Lysine-ketoglutaratc reductase catalyzes the first step of lysine catabolism in maize (Zea mays L.) endosperm. The enzyme condenses L-lysine and α-ketoglutarate into saccharopine using NADPH as cofactor. It is endosperm-specific and has a temporal pattern of activity, increasing with the onset of kernel development, reaching a peak 20 to 25 days after pollination, and thereafter decreasing as the kernel approaches maturity. The enzyme was extracted from the developing maize endosperm and partially purified by ammonium-sulfate precipitation, anion-exchange chromatography on DEAE-cellulose, and affinity chromatography on Blue-Sepharose CL-6B. The preparation obtained from affinity chromatography was enriched 275-fold and had a specific activity of 411 nanomoles per minute per milligram protein. The native and denaturated enzyme is a 140 kilodalton protein as determined by polyacrylamide gel electrophoresis. The enzyme showed specificity for its substrates and was not inhibited by either aminoethyl-cysteine or glutamate. Steady-state product-inhibition studies revealed that saccharopine was a noncompetitive inhibitor with respect to α-ketoglutarate and a competitive inhibitor with respect to lysine. This is suggestive of a rapid equilibriumordered binding mechanism with a binding order of lysine, α-ketoglutarate, NADPH. The enzyme activity was investigated in two maize inbred lines with homozygous normal and opaque-2 endosperms. The pattern of lysine-ketoglutarate reductase activity is coordinated with the rate of zein accumulation during endosperm development. A coordinated regulation of enzyme activity and zein accumulation was observed in the opaque-2 endosperm as the activity and zein levels were two to three times lower than in the normal endosperm. Enzyme extracted from L1038 normal and opaque-2 20 days after pollination was partially purified by DEAE-cellulose chromatography. Both genotypes showed a similar elution pattern with a single activity peak eluted at approximately 0.2 molar KCL. The molecular weight and physical properties of the normal and opaque-2 enzymes were essentially the same. We suggest that the Opaque-2 gene, which is a transactivator of the 22 kilodalton zein genes, may be involved in the regulation of the lysine-ketoglutarate reductase gene in maize endosperm. In addition, the decreased reductase activity caused by the opaque-2 mutation may explain, at least in part, the elevated concentration of lysine found in the opaque-2 endosperm.
Resumo:
Aim: To evaluate anti-Müllerian hormone (AMH) levels in patients with clinical and molecular diagnosis of 5α-reductase 2 deficiency. Patients and methods: Data from 14 patients whose age ranged from 21 days to 29 years were analyzed according to age and pubertal stage. Sexual ambiguity was rated as Prader III in 11 patients. LH, FSH, testosterone (T), dihydrotestosterone (DHT) and AMH serum levels were measured in all but two patients, who had been previously submitted to gonadectomy; T and DHT were also measured in 20 age-matched controls. Results: Gonadotropin levels were normal in all but one patient who retained gonads (six of whom had reached puberty) and T/DHT ratio was elevated in all patients when compared to controls. All prepubertal patients had AMH levels < -1 SD for age, while most pubertal patients had AMH levels compatible with pubertal stage. Conclusions: Prepubertal patients with 5α-reductase 2 deficiency have AMH values in the lower part of the normal range. These data indicate that T does not need to be converted to DHT to inhibit AMH secretion by Sertoli cells. © Freund Publishing House Ltd., London.
Resumo:
Objective: Compare the cryoprotectants Dimethyl Sulphoxide (DMSO), Ethylene Glycol (EG) and their association for cryopreservation of sheep ovarian cortex. Methodology: Fragments collected from ovaries were divided into 3 parts. 1. One part from sample was destined for analysis of fresh material. 2. The second part was incubated with solution of freezing having 1,5M EG or 1,5M DMSO or 1,5MEG + 1,5M DMSO and washed for dilution of the cryoprotectants. 3. The third part was submitted to cryopreservation using the same cryoprotectans (EG 1,5M; DMSO 1,5M and EG + DMSO 1,5M) and cryopreserved. In all groups, one part of sample was submitted to pre-antral follicles isolation and the remainder was destined to ultra-structural analysis. Results: After isolation of fresh primordial follicles (control), the percentage of viable follicles was 78,9%. The percentage of viable follicles only exposed to cryoprotectants 1,5M EG, 1,5M DMSO and 1,5M EG + 1,5M DMSO was 77,1%, 68,4% and 60,7% respectively. After cryopreservation were 75%, 60% and 55,6% respectively. Ultra-structural analysis of the primordial follicles derived from fresh ovarian fragments or from fragments just exposed to the cryoprotectants showed similar morphology. However, in frozen samples, alterations of mitochondria were observed in all groups. Despite this, the integrity of the remained organelles was preserved in follicles cryopreserved with EG, while that in others groups (DMSO and association) an excess of vacuolizaton in cytoplasm of oocytes and swelling of nuclear membrane was observed indicating degeneration. Conclusion: The Ehilene Glycol seems to be the cryoprotector more adequated for cryopreservation of sheep ovarian tissue.
Resumo:
Intestinal pathogens are exposed to various stress conditions during their infectious cycle. Anaerobiosis, one of such hostile condition, is offered by the host within gut and intestinal lumen, where survival, multiplication and entry into intestinal epithelial cells are priority for the invasion of the pathogen. The fumarate reductase (frdABCD), dimethyl sulfoxide (DMSO)-trimethylamine N-oxide (TMAO) reductase (dmsABC), and nitrate reductase (narGHIJ) operons in Salmonella Typhimurium (STM) encode enzymes involved in anaerobic respiration to the electron acceptors fumarate, DMSO, TMAO, and nitrate, respectively. They are regulated in response to nitrate and oxygen availability and changes in cell growth rate. Vitamin B12 (cobalamin) is synthesized by Salmonella Typhimurium only under anaerobic growth conditions used as a cofactor in four known reactions. The deletion of cobS and cbiA genes prevent any form of cobalamin production. In the present study we evaluate the infection of birds by mutants of STM, with the anaerobic respiratory system committed by mutations in the genes: narG, napA, cobS, cbiA, frdA, dmsA, and torC. Virulence was assessed by oral inoculation of groups of one-day-old broilers with 0.1 mL of culture contained 10 8 colony forming units (CFU)/mL or diluted at 10 -3 and 10 -2 of strains mutants of Salmonella Typhimurium. Clinical signs and mortality were recorded over a period of 21 days. In general, the symptoms of chickens infected with the mutant strains were similar to those presenting by control birds. Except for STMNalr cbiA, all showed reduced capacity to cause mortality in comparison with the original strain. The mortality of group of chickens infected with STMNal r △narG, STMNal r △frdA, STMNal r △dmsA and STMNal r △cobS△cbiA showed significant decrease in mortality compared to control group (p<0.05).
Resumo:
Recently soluble melanin derivatives have been obtained by a synthetic procedure carried out in DMSO (D-melanin). In this work a comparative study of the structural characteristics of synthetic melanin derivatives obtained by oxidation of L-DOPA in H2O and DMSO are presented. To this end, Fourier-transform infrared spectroscopy as well as proton and carbon nuclear magnetic resonance techniques has been employed. In addition, aging effects have been investigated for D-melanin. The results suggest that sulfonate groups (-SO2CH3) from the oxidation of DMSO, are incorporated into melanin, which confers protection to the phenolic hydroxyl group present in its structure. The solubility of D-melanin in DMSO is attributed to the presence of these groups. When D-melanin is left in air for long time periods, the sulfonate groups leave the structure, and an insoluble compound is obtained. NaOH and water have been used, in order to accelerate the release of the sulfonate groups attached to D-melanin, thereby corroborating the proposed structure and the synthesis mechanism. © 2013.
Resumo:
Objective The objective was to examine the effect of a solvent dimethyl sulfoxide (DMSO) on resin-dentin bond durability, as well as potential functional mechanisms behind the effect. Methods Microtensile bond strength (μTBS) was evaluated in extracted human teeth in two separate experiments. Dentin specimens were acid-etched and assigned to pre-treatment with 0.5 mM (0.004%) DMSO as additional primer for 30 s and to controls with water pre-treatment. Two-step etch-and-rinse adhesive (Scotchbond 1XT, 3M ESPE) was applied and resin composite build-ups were created. Specimens were immediately tested for μTBS or stored in artificial saliva for 6 and 12 months prior to testing. Additional immediate and 6-month specimens were examined for interfacial nanoleakage analysis under SEM. Matrix metalloproteinase (MMP) inhibition by DMSO was examined with gelatin zymography. Demineralized dentin disks were incubated in 100% DMSO to observe the optical clearing effect. Results The use of 0.5 mM DMSO had no effect on immediate bond strength or nanoleakage. In controls, μTBS decreased significantly after storage, but increased significantly in DMSO-treated group. The control group had significantly lower μTBS than DMSO-group after 6 and 12 months. DMSO also eliminated the increase in nanoleakage seen in controls. 5% and higher DMSO concentrations significantly inhibited the gelatinases. DMSO induced optical clearing effect demonstrating collagen dissociation. Significance DMSO as a solvent may be useful in improving the preservation of long-term dentin-adhesive bond strength. The effect may relate to dentinal enzyme inhibition or improved wetting of collagen by adhesives. The collagen dissociation required much higher DMSO concentrations than the 0.5 mM DMSO used for bonding. © 2013 Academy of Dental Materials.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)