35 resultados para Dimethyl carbonate
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The electrochemical oxidation of (benzylideneacetone)dicarbonyl(phosphine)iron(0) and benzylideneacetone)dicarbonyl(phosphite)iron(0) complexes was studied by cyclic voltammetry and controlled potential electrolysis in 0.5 M NaClO4 (dimethyl formamide). The results suggest that the electrode process involves a complicated mechanism, the species formed in the first oxidation step being highly unstable and its decomposition producing free benzylideneacetone, free phosphine or phosphite, solvated iron(II) species and carbon monoxide which adsorbs on the platinum electrode. A linear relationship between E(p/2)ox and the ligand parameter P(L) was obtained with E(s) = 0.41 V and beta = 0.964, where E(s) and beta-denote electron-richness and polarizability of the metal centre, respectively.
Resumo:
Electrolysis has been examined as a method of synthesis for [(L)(dppb)Ru(mu-Cl)(3)RuCl(dppb)] complexes, where dppb = 1,4-bis(diphenylphosphino)butane and L = pyridine (py), 4-methylpyridine (4-pic) or dimethyl sulfoxide (DMSO), by using [RuCl3(dppb)(L)] as precursors. The products of the electrolysis were characterized by P-31-{H-1} NMR, cyclic voltammetry and near infrared spectroscopy. The presence of the [Ru2Cl5(dppb)(2)] complex in the electrochemical cell suggests a mechanism by which the starting original species from the bulk solution reacts with the reduced form [RuCl2(dppb)(L)] generated at the surface of the electrode. The crystal structure of the precursor mer-[RuCl3(dppb)(4-pic)] was determined by X-ray diffraction.
Resumo:
Solid Ln-OKCO3-DMCP compounds, where Ln represents lanthanides (III) and yttrium (III) ions and DMCP is the anion 4-dimethyiaminocinnamylidenepyruvate, have been prepared. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC), X-ray diffraction powder patterns and elemental analysis have been used to characterize the compounds. The thermal stability as well as the thermal decomposition of these compounds were studied using an alumina crucible in an air atmosphere.
Resumo:
In this work, Eu(III) and Eu(II) doped gadolinium silicates has been obtained as compact tubes starting from spherical gadolinium hydroxide carbonate using the pores of silica matrix as support and its surface as reagent. Eu(III) doped gadolinium silicate with hexagonal phase shows an interesting visible shifted charge transfer band when compared to disilicate with orthorhombic phase that was also obtained. Eu(II) gadolinium silicate has been prepared using CO atmosphere presenting an intense blue emission. The divalent europium system shows a potential application as an UV-blue converter. The samples were characterized by scanning electron microscopy (SEM), X-ray powder diffractometry (XRD) and photoluminescence spectroscopy. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The kinetics of the hexacyanoferrate(III)-N,N′-dimethyl-4,4′-bipyridinium radical (MV+) reaction was studied by a laser flash photolysis technique. The radical was generated, in the presence of Fe(CN)6 3-, by quenching the excited state *Ru(bpy)3 2+ with MV2+. The second-order rate constant for the Fe(CN)6 3--MV+ reaction is (7.6 ± 0.5) × 109 M-1 s-1 at 23°C and ionic strength 0.10 M. Comparison with the rate constants calculated for the diffusion-controlled reaction (4.7 × 109 M-1 s-1) and the activation-controlled reaction (5.2 × 1012 M-1 s-1, on the basis of self-exchange rate constants of 8.0 × 105 M-1 s-1 and 1.9 × 104 M-1 s-1 for the MV2+/+ and Fe(CN)6 3-/4- couples, respectively) leads to the conclusion that the Fe(CN)6 3--MV+ reaction is diffusion controlled. The rate constant for the Fe(CN)6-MV2+ reaction, calculated from the rate constant for the Fe(CN)6 3--MV+ reaction and the appropriate equilibrium constant, is 2.4 × 10-5 M-1 s-1 at 23°C and ionic strength 0.10 M. Microscopic reversibility considerations require that the Fe(CN)6 4--MV2+ reaction be controlled by the dissociation of the successor complex Fe(CN)6 3-|MV+. The thermal and optical electron transfers in the ion pair Fe(CN)6 4-|MV2+ and in related systems are analyzed and discussed. © 1982 American Chemical Society.
Resumo:
Zinc oxide can be obtained by thermal decomposition of hydrozincite, a topochemical reaction. This work reports the relation between zinc oxide morphology and the precursor zinc hydroxide carbonate precipitation time. The morphological evolution was monitored by SEM, IR and XRD. Zinc oxide obtained from initially precipitated hydrozincite consists of porous spherical aggregates and shows a single Zn-O IR vibrational band. At longer periods of precipitation time the aggregates were transformed into spherulitic-shaped zinc oxide particles showing the Zn-O split vibrational band. X-ray patterns show that the hexagonal zinc oxide phase is substantially increased as a function of hydrozincite precipitation time. © 1997 Elsevier Science S.A.
Resumo:
Fuel cell as MCFC (molten carbonate fuel cell) operate at high temperatures, and due to this issue, cogeneration processes may be performed, sending heat for own process or other purposes as steam generation in an industry. The use of ethanol for this purpose is one of the best options because this is a renewable and less environmentally offensive fuel, and cheaper than oil-derived hydrocarbons (in the case of Brazil). In the same country, because of technical, environmental and economic advantages, the use of ethanol by steam reforming process have been the most investigated process. The objective of this study is to show a thermodynamic analysis of steam reforming of ethanol, to determine the best thermodynamic conditions where are produced the highest volumes of products, making possible a higher production of energy, that is, a most-efficient use of resources. To attain this objective, mass and energy balances are performed. Equilibrium constants and advance degrees are calculated to get the best thermodynamic conditions to attain higher reforming efficiency and, hence, higher electric efficiency, using the Nernst equation. The advance degree of reforming increases when the operation temperature also increases and when the operation pressure decreases. But at atmospheric pressure (1 atm), the advance degree tends to the stability in temperatures above 700°C, that is, the volume of supplemental production of reforming products is very small for the high use of energy resources necessary. Reactants and products of the steam-reforming of ethanol that weren't used may be used for the reforming. The use of non-used ethanol is also suggested for heating of reactants before reforming. The results show the behavior of MCFC. The current density, at same tension, is higher at 700°C than other studied temperatures as 600 and 650°C. This fact occurs due to smaller use of hydrogen at lower temperatures that varies between 46.8 and 58.9% in temperatures between 600 and 700°C. The higher calculated current density is 280 mA/cm 2. The power density increases when the volume of ethanol to be used also increases due to higher production of hydrogen. The highest produced power at 190 mW/cm 2 is 99.8, 109.8 and 113.7 mW/cm2 for 873, 923 and 973K, respectively. The thermodynamic efficiency has the objective to show the connection among operational conditions and energetic factors, which are some parameters that describes a process of internal steam reforming of ethanol.
Resumo:
A new series of complexes of general formulae [PdX2(tmdmPz)] {X = Cl (1), Br (2), I (3), SCN (4); tmdmPz = N′-methyl-3,5-dimethyl-1- thiocarbamoylpyrazole} have been synthesized and characterized by elemental analysis, molar conductivities, IR, 1H and 13C{ 1H} NMR spectroscopy. In these complexes, the tmdmPz coordinates to Pd(II) center as a neutral N,S-chelating ligand. The geometries of the complexes have been optimized with the DFT method. Cytotoxicity evaluation against LM3 (mammary adenocarcinoma) and LP07 (lung adenocarcinoma) cell lines indicated that complexes 1-4 were more active than cisplatin. The binding of the complexes with a purine base (guanosine) was investigated by 1H NMR and mass spectrometry, showing that the coordination of guanosine occurs through N7. Electrophoretic DNA migration studies showed that all of them modify the DNA tertiary structure. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Objective The objective was to examine the effect of a solvent dimethyl sulfoxide (DMSO) on resin-dentin bond durability, as well as potential functional mechanisms behind the effect. Methods Microtensile bond strength (μTBS) was evaluated in extracted human teeth in two separate experiments. Dentin specimens were acid-etched and assigned to pre-treatment with 0.5 mM (0.004%) DMSO as additional primer for 30 s and to controls with water pre-treatment. Two-step etch-and-rinse adhesive (Scotchbond 1XT, 3M ESPE) was applied and resin composite build-ups were created. Specimens were immediately tested for μTBS or stored in artificial saliva for 6 and 12 months prior to testing. Additional immediate and 6-month specimens were examined for interfacial nanoleakage analysis under SEM. Matrix metalloproteinase (MMP) inhibition by DMSO was examined with gelatin zymography. Demineralized dentin disks were incubated in 100% DMSO to observe the optical clearing effect. Results The use of 0.5 mM DMSO had no effect on immediate bond strength or nanoleakage. In controls, μTBS decreased significantly after storage, but increased significantly in DMSO-treated group. The control group had significantly lower μTBS than DMSO-group after 6 and 12 months. DMSO also eliminated the increase in nanoleakage seen in controls. 5% and higher DMSO concentrations significantly inhibited the gelatinases. DMSO induced optical clearing effect demonstrating collagen dissociation. Significance DMSO as a solvent may be useful in improving the preservation of long-term dentin-adhesive bond strength. The effect may relate to dentinal enzyme inhibition or improved wetting of collagen by adhesives. The collagen dissociation required much higher DMSO concentrations than the 0.5 mM DMSO used for bonding. © 2013 Academy of Dental Materials.
Resumo:
Mixed calcium and copper oxalates, with different proportions of Ca2+ and Cu2+ ions, were precipitated by dimethyl oxalate hydrolysis in homogeneous solution. The compounds were evaluated by means of scanning electron microscopy, energy dispersive X-ray spectroscopy, thermogravimetry (TG), and differential thermal analysis (DTA). The results suggested quantitative precipitation without solid solution formation. From the TG and DTA curves, it was possible to evaluate the Ca2+ ion proportion in the solid phase and to confirm the precipitation of the individual species.
Resumo:
Dioctadecyl-dimethyl-ammonium bromide (DODAB) vesicles can be characterized by their differential scanning calorimetry (DSC) thermograms comprised of two endotherms at T (s) a parts per thousand 36 A degrees C and T (m) a parts per thousand 45 A degrees C in the heating, ascribed respectively to the subgel-to-gel and gel-to-liquid crystalline transitions, and two exotherms at T'(m) a parts per thousand 40 A degrees C and T'(s) a parts per thousand 16 A degrees C in the cooling, ascribed respectively to the liquid crystalline-to-gel and gel-to-subgel transitions. It has been reported but not proved that the T (m)-transitions, the T'(m)-transitions, the T (s)-transitions, and the T'(s)-transitions are reverse to each other, displaying hystheresis Delta T (m) a parts per thousand 5 A degrees C and Delta T (s) a parts per thousand 20-25 A degrees C, respectively. By investigating the effects of the initial scanning temperature (T (i)) on the transition enthalpies (Delta H (m), Delta H (s), Delta H'(m) and Delta H'(s)), we have seen that these transitions are the reverse to each other and display different kinetics.