19 resultados para Diffusion bonding (Metals)
Resumo:
The isothermal kinetics of Ag precipitation was studied in Cu-Al-Ag alloys with concentrations ranging from 2 to 8 wt.%Al and 2 to 12 wt.%Ag, using scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDX) and microhardness measurements. The results indicated a change in the precipitates growing mechanism from diffusion to interface controlled process, probably due to a change in the nature of the interface with the Ag and Al enrichment of the precipitates. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
The adsorption process in layer-by-layer (LBL) films of poly(o-methoxyaniline) alternated with poly(vinyl sulfonic acid) is explained using the Avrami equation. This equation was used due to its mathematical simplicity and adequate description of experimental data in real polymer systems. The Avrami parameters are a convenient means to represent empirical data of crystallization, and if microscopic knowledge is available these parameters can also be associated with adsorption mechanisms. The growth of spherulites in the LBL films was studied as a function of time using atomic force microscopy and the data were used to estimate the number and radii of aggregates, from which the Avrami parameters were determined. We find that the adsorption mechanism may correspond to a tri dimensional, diffusion-controlled growth, with increasing nucleation rate, consistent with results from kinetics of adsorption.
Resumo:
Metals and alloys containing solute atoms dissolved interstitially often show anelastic behavior due to a process know as stress-induced ordering. The application of mechanical spectroscopy measurements to diffusion studies in body-centered cubic metals has been extensively used in the last decades. However the kind of preferential occupation of interstitial solutes in body-centered cubic metals is still controversial. The anelastic properties of the Nb and Nb-1 wt% Zr polycrystalline alloys were determined by internal friction and oscillation frequency measurements using a torsion pendulum inverted performed between 300K and 650K, operating in a frequency oscillation in the hertz bandwidth. The interstitial diffusion coefficients of oxygen and nitrogen in Nb and Nb-1 wt% Zr samples were determined at two distinct conditions: (a) for low concentration of oxygen and (b) for high concentration of oxygen.
Resumo:
The interaction among heavy interstitial atoms present in metals with bcc structure is studied using anelastic spectroscopy. This technique makes it possible to obtain information on interstitial concentration, precipitation, solubility limit, and diffusion. The diffusion coefficients of nitrogen in niobium were obtained using the relaxation parameters obtained from anelastic spectroscopy measurements for different oscillation frequencies of the system. The results showed the interstitial diffusion of nitrogen present in solid solution in niobium when submitted to different charges of nitrogen at a temperature of 1373 K and a partial pressure in the order of 10-4 Torr. The exponential variation of the pressure experimentally in function of the time was thus obtained.