155 resultados para DNA damage response


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Helicobacter pylori (H. pylori) is believed to dispose carriers to gastric cancer by inducing chronic inflammation. The inflammatory processes may result in the generation of reactive oxygen and nitrogen species that damage DNA. In this study, we investigated the relationships between DNA damage in the gastric mucosa and cogA, vocA, and iceA genotypes of H. pylori. The study was conducted with biopsies from the gastric antrum and corpus of 98 H. pylori-infected and 26 uninfected control patients. H. pylori genotypes were determined by PCR and DNA damage was measured in gastric mucosal cells by the Comet assay (single cell gel electrophoresis). All patients were nonsmokers, not abusing alcohol, and not using prescription or recreational drugs. Levels of DNA damage were significantly higher (P < 0.0001) in the H. pylori-infected patients than in uninfected patients. In comparison with the level of DNA damage in the uninfected controls, the extent of DNA damage in both the antrum (OR = 8.45; 95% Cl 2.33-37.72) and the corpus (OR 6.55; 95% Cl 2.52-17.72) was related to infection by cagA(+)/vocAs1m1 and iceA1 strains. The results indicate that the genotype of H. pylori is related to the amount of DNA damage in the gastric mucosa. These genotypes could serve as biomarkers for the risk of extensive DNA damage and possibly gastric cancer. (C) 2004 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the relationship among oxidative DNA damage, density of Helicobacter pylori and the relevance of cagA, vacA and iceA genotypes of H. pylori. Gastric epithelial cells were isolated from 24 uninfected patients, 42 H. pylori infected patients with gastritis, and 61 patients with gastric cancer. Oxidative DNA damage was analyzed by the Comet assay, the density of H. pylori was measured by real-time polymerase chain reaction (PCR), and allelic variants of cagA, vacA and iceA were identified using the PCR. Infected patients by Helicobacter pylori cagA(+), vacAs1 m1 and iceA1 genotype showed higher levels of oxidative DNA damage than infected patients with H. pylori cagA(-), vacAs2 m2 and iceA2 genotypes and uninfected patients. Density of H. pylori did not influence oxidative DNA damage. Our results indicate that H. pylori genotype is more relevant than density for oxidative DNA damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Toxoplasmosis is an anthropozoonotic widespread disease, caused by the coccidian protozoan parasite Toxoplasma gondii. Since there are no data regarding the genotoxicity of the parasite in vivo, this study was designed to evaluate the genotoxic potential of the toxoplasmosis on isogenic mice with normal diet or under dietary restriction and submitted to a treatment with sulfonamide (375 mug/kg per day). DNA damage was assessed in peripheral blood, liver and brain cells using the comet assay (tail moment). The results for leucocytes showed increases in the mean tail moment in mice under dietary restriction; in infected mice under normal diet; in infected, sulfonamide-treated mice under normal diet; in infected mice under dietary restriction and in infected sulfonamide-treated mice under dietary restriction. In liver and brain cells, no statistically significant difference was observed for the tail moment. These results indicated that dietary restriction and T. gondii were able to induce DNA damage in peripheral blood cells, as detected by the comet assay. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuberculosis (TB), a chronic infectious disease, is a major cause of morbidity and mortality worldwide. Expression of iNOS and consequent production of NO during the inflammatory process is an important defense mechanism against TB bacteria. We have tested whether pulmonary TB patients undergoing anti-tuberculosis treatment present DNA damage, and whether this damage is related to oxidative stress, by evaluating total hydrophilic antioxidant capacity and iNOS expression. DNA damage in peripheral blood mononuclear cells from patients and healthy tuberculin test (PPD) positive controls was evaluated by single-cell gel electrophoresis (comet assay), and iNOS expression was measured by qPCR. We also evaluated total hydrophilic antioxidant capacity in plasma from patients and controls. Compared to controls, pulmonary TB patients under treatment presented increased DNA damage, which diminished during treatment. Also, the antioxidant capacity of these individuals was increased at the start of treatment, and reduced during treatment. TB patients showed lower iNOS expression, but expression tended to increase during treatment. Our results indicate that pulmonary TB patients under anti-TB treatment exhibit elevated DNA damage in peripheral blood mononuclear cells. This damage was not related to nitric oxide but may be due to other free radicals. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present study was to use the comet assay to evaluate the steady-state level of DNA damage in peripheral blood leukocytes from diabetic and non-diabetic female Wistar rats exposed to air or to cigarette smoke. A total of 20 rats were distributed into four experimental groups (n= 5 rats/group): non-diabetic (control) and diabetic exposed to filtered air; non-diabetic and diabetic exposed to cigarette smoke. A pancreatic beta (beta)-cytotoxic agent, streptozotocin (40 mg/kg b.w.) was used to induce experimental diabetes in rats. Rats placed into whole-body exposure chambers were exposed for 30 min to filtered air (control) or to tobacco smoke generated from 10 cigarettes, twice a day, for 2 months. At the end of the 2-month exposure period, each rat was anesthetized and humanely killed to obtain blood samples for genotoxicity analysis using the alkaline comet assay. Blood wleukocytes sampled from diabetic rats presented higher DNA damage values (tail moment =0.57 +/- 0.05; tail length =19.92 +/- 0.41, p < 0.05) compared to control rats (tail moment =0.34 +/- 0.02; tail length= 17.42 +/- 0.33). Non-diabetic (tail moment =0.43 +/- 0.04, p > 0.05) and diabetic rats (tail moment= 0.41 +/- 0.03, p > 0.05) exposed to cigarette smoke presented non-significant increases in DNA damage levels compared to control group. In conclusion, our data show that the exposure of diabetic rats to cigarette smoke produced no additional genotoxicity in peripheral blood cells of female Wistar rats. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

dThe objective of the present study was to evaluate DNA damage level in blood leukocytes from diabetic and non-diabetic female Wistar rats exposed to air or to cigarette smoke, and to correlate the findings with levels of DNA damage detected in blood leukocyte samples from their fetuses. A total of 20 rats were distributed into four experimental groups: non-diabetic (control; G1) and diabetic exposed to filtered air (G2): non-diabetic (G3) and diabetic (G4) exposed to cigarette smoke. Rats placed into whole-body exposure chambers were exposed for 30 min to filtered air (control) or to tobacco smoke generated from 10 cigarettes, twice a day, for 2 months. Diabetes was induced by a pancreatic beta-cytotoxic agent, streptozotocin (40 mg/kg b.w.). At day 21 of pregnancy, each rat was anesthetized and humanely killed to obtain maternal and fetal blood samples for genotoxicity analysis using the alkaline comet assay. G2, G3 and G4 dams presented higher DNA damage values in tail moment and tail length as compared to G1 group. There was a significant positive correlation between DNA damage levels in blood leukocyte samples from G2 and G3 groups (tail moment); G3 and G4 groups (tail length) and G3 group (tail intensity) and their fetuses. Thus, this study showed the association of severe diabetes and tobacco cigarette smoke exposure did not exacerbate levels of maternal and fetal DNA damages related with only diabetes or cigarette smoke exposure. Based on the results obtained and taking into account other published data, maternal diabetes requires rigid clinical control and public health and education campaigns should be increased to encourage individuals, especially pregnant women, to stop smoking. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regression analysis of 538 semen samples demonstrated that percentages of normal nuclear sperm and all spermatozoa with abnormalities of nuclear form at high magnification had significant negative correlation with percentages of DNA fragmentation. on the other hand, there was a positive correlation between percentages of spermatozoa with nuclear vacuoles and those with DNA fragmentation. (Fertil Steril (R) 2010;94:1937-40. (C) 2010 by American Society for Reproductive Medicine.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Birefringence or double refraction is the decomposition of a ray of light into two rays when it passes through an anisotropic material such as quartz. Sperm cells have been demonstrated to be optically anisotropic. The objective of this study was to evaluate the relationship between the pattern of human sperm head birefringence (SHBF) and DNA damage. A total of 26 patients with normal semen were included. DNA damage (fragmentation and denaturation) was evaluated in the sperm head in the context of birefringence, both total (SHBF-T) and partial (SHBF-P), by terminal deoxyribonucleotidyl transferase (TdT)-mediated dUDP nick-end labelling assay and acridine orange fluorescence, respectively. Positive DNA fragmentation in spermatozoa with SHBF-T (205/1053; 19.5%) was significantly higher (P < 0.0001) than in spermatozoa that presented SHBF-P (60/820; 7.3%). However, the percentage of denatured DNA in spermatozoa with SHBF-T (824/1256; 65.6%) was not significantly different from the ones with SHBF-P (666/1009; 66.0%). In conclusion, the data support a positive relationship between spermatozoa with total SHBF in their head and increased DNA fragmentation. (C) 2011, Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Helicobacter pylori (H. pylori) is considered to predispose carriers to gastric cancer but its role on gastric carcinogenesis is still unknown. The aim of this study was to investigate DNA damage by the comet assay in gastric epithelial cells from antrum and corpus in H. pylori-infected patients with gastritis of different degrees. H. pylori status, gastric histology, and DNA damage were studied in 62 H. pylori-infected and 18 non-infected patients, all of them non-smokers, nonalcoholics, and non-drug users. DNA damage was significantly higher in H. pylori-infected patients presenting gastritis than in non-infected patients with normal mucosa. A direct correlation between the levels of DNA damage and the intensity of gastritis was observed in H. pylori-infected patients. Association between DNA damage and age was also found. The levels of DNA damage were significantly higher in patients older than 50 years than in younger patients with the same degree of gastritis. Our results indicate that H. pylori infection is associated with DNA damage in gastric epithelial cells, which could be a biomarker of risk for gastric cancer in humans.