37 resultados para DENGUE VIRUS
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The dengue virus is transmitted in regions previously infested with the mosquito Aedes aegypti. To assess the spreading and establishment of the dengue disease vector, a mathematical model is developed that takes into account the diffusion and advection phenomena. A discrete model based on the cellular automata approach, which is a good framework to deal with small populations, is also developed to be compared with the continuous modeling.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Microbiologia - IBILCE
Resumo:
Dengue virus is a major public health problem worldwide. Aedes (Stegomyia) aegypti is the main dengue vector. Since there is no specific treatment or effective vaccine, control measure is focused on vector control. It is believed that population density is higher in the warmer/rainy season than in cold/dry. The study aimed to genetically characterize population dynamics of Ae. aegypti during climatic variations. Collections were performed at least once in both periods over five years by oviposition traps at Botucatu city. The technique of TaqMan allelic discrimination was used for genetic analysis, in which SNPs from nine genes distributed on three chromosomes of the mosquito were genotyped. Bayesian analysis did not show variance on population structure over the five year period. The percentage of variation among samples in statistical analysis was low (Fst = 0.0028, p = 0.7634), furthermore the allele frequencies were constant. The results show that despite wide variation in the density of adults, population size does not vary. Therefore, there is variation in the prevalence of the species life stages: adults in warmer/rainy, and possibly eggs in cold/dry, resulting in different control strategies for each period. Moreover, estimation of population size should not consider only winged adults, but all other found life stages forms
Resumo:
Dengue virus (DENV) is an enveloped RNA virus that is mosquito-transmitted and can infect a variety of immune and non-immune cells. Response to infection ranges from asymptomatic disease to a severe disorder known as dengue hemorrhagic fever. Despite efforts to control the disease, there are no effective treatments or vaccines. In our search for new antiviral compounds to combat infection by dengue virus type 1 (DENV-1), we investigated the role of galectin-1, a widely-expressed mammalian lectin with functions in cell-pathogen interactions and immunoregulatory properties. We found that DENV-1 infection of cells in vitro exhibited caused decreased expression of Gal-1 in several different human cell lines, suggesting that loss of Gal-1 is associated with virus production. In test of this hypothesis we found that exogenous addition of human recombinant Gal-1 (hrGal-1) inhibits the virus production in the three different cell types. This inhibitory effect was dependent on hrGal-1 dimerization and required its carbohydrate recognition domain. Importantly, the inhibition was specific for hrGal-1, since no effect was observed using recombinant human galectin-3. Interestingly, we found that hrGal-1 directly binds to dengue virus and acts, at least in part, during the early stages of DENV-1 infection, by inhibiting viral adsorption and its internalization to target cells. To test the in vivo role of Gal-1 in DENV infection, Gal-1-deficient-mice were used to demonstrate that the expression of endogenous Galectin-1 contributes to resistance of macrophages to in vitro-infection with DENV-1 and it is also important to physiological susceptibility of mice to in vivo infection with DENV-1. These results provide novel insights into the functions of Gal-1 in resistance to DENV infection and suggest that Gal-1 should be explored as a potential antiviral compound.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)