90 resultados para Corrosion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of Fe addition on the microstructural properties and the corrosion resistance of Al-Zn-Mg alloys submitted to different heat treatments (cast, annealed and aged), has been studied in chloride solutions using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), cyclic polarization (CP) and open circuit potential (o.c.p.) measurements. The presence of 0.3% Fe in the alloy limited the growth of the MgZn2 precipitates, both in the annealed and in the quenched specimens. No effect of Cr on the grain size in the presence of Fe was found because of the accumulation of Cr in the Fe-rich particles. Fe in the Al-Zn-Mg alloys also made them more susceptible to pitting. Pitting occurred mainly near the Fe-rich particles both, under o.c.p. conditions in O-2-saturated solutions and during the CP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The corrosion resistance of three of the constituent phases in high copper dental amalgams has been investigated by electrochemical methods in 0.9% NaCl solution. Polarization curves show corrosion potentials most positive for gamma(1)-Ag2Hg3, followed by Ag-Cu, and gamma-Ag3Sn in agreement with the order of corrosion resistance deduced from the corrosion currents. Complex plane impedance plots at the open circuit potential showed distorted semicircles with diffusional components at low frequency for Ag-Hg and Ag-Cu, while for gamma-Ag3Sn a layer of corrosion products is formed, partially or completely covering the surface of the electrode. Impedance and noise spectra have been compared in the frequency domain, and show good agreement. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of gas tungsten are welding on the microstructure and electrochemical corrosion of Al-Zn-Mg-Fe alloys submitted to different heat treatments (as fabricated, annealed and aged) has been studied using optical microscopy, SEM, TEM, EDX, cyclic voltammetry and corrosion potential measurements in chloride solutions. The electrochemical techniques were very sensitive to the change in the phase compositions produced by welding. Welding caused a decrease in the mean grain size, in the hardness and in the corrosion resistance of the age-hardened alloys. The structure of the latter became strongly altered by welding to lead to phase compositions very close to those of the cold rolled and annealed specimens. (C) 2000 Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dental amalgams, formed by reaction of mercury with a powder alloy containing mainly Ag, Sn, Cu and Zn, have a complex metallurgical structure which can contain up to six phases. Their observed corrosion is thus a complex process, which involves contributions from each of the phases present as well as intergranular corrosion. It is thus of interest to investigate the corrosion of individual phases present in dental amalgams. In this work the corrosion behaviour in 0.9% NaCl solution of Ag-Hg, Ag-Sn and Sn-Hg phase components of dental amalgams was investigated by electrochemical methods. The corrosion resistance was found to decrease in the order gamma (1)-Ag2\Hg3, gamma -Ag3Sn and gamma (2)-Sn7Hg. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An organic-inorganic hybrid coating was developed to improve the corrosion resistance of the aluminum alloy AA 2024-T3. Organic and inorganic coatings derived from glycidoxypropyltrimethoxysilane (GPTMS) and aluminum tri-sec-butoxide Al((OBu)-Bu-s)(3), with different cerium contents, were deposited onto aluminum by dip-coating process. Corrosion resistance and mechanical properties were investigated by electrochemical impedance measurements and nano-indentation respectively. An optimal cerium concentration of 0.01 M was evidenced. To correlate and explain the hybrid coating performances in relation to the cerium content, NMR experiments were performed. It has been shown that when the cerium concentration in the hybrid is higher than 0.01 M there are important modifications in the hybrid structure that account for the mechanical properties and anti-corrosion behavior of the sol-gel coating. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal spray WC-based coatings are widely used in the aircraft industry mainly for their resistance to wear, reworking and rebuilding operations and repair of worn components on landing gear, hydraulic cylinders, actuators, propeller hub assemblies, gas turbine engines, and so on. The aircraft industry is also trying to use thermal spray technology to replace electroplating coatings such as hard chromium. In the present work, WC-Co coatings were built up on an AA 7050 aluminum alloy using high velocity oxygen fuel (HVOF) technology and a liquid nitrogen cooling prototype system. The influence of the spray parameters (standard conditions, W19S, increasing the oxygen flux, W19H, and also increasing the carrier gas flux, W19F) on corrosion, friction, and abrasive wear resistance were also studied. The coatings were characterized using optical (OM) and scanning electron (SEM) microscopy, and X-ray diffraction (XRD). The friction and abrasive wear resistance of the coatings were studied using Rubber Wheel and Ball on Disk tests. The electrochemical studies were conducted using open-circuit potential (E(oc)) measurements and electrochemical impedance spectroscopy (EIS). Differences among coated samples were mainly related to the variation of the thermal spray parameters used during the spray process. No significant differences were observed in the wear resistance for the coatings studied, and all of them showed a wear rate around 10 times lower than that of the aluminum alloy. The results of mass loss and wear rate were interpreted considering different mechanisms. Comparing the different spray parameters, the oxygen flux (higher flame temperature) produced the sample which showed the highest corrosion resistance in aerated and unstirred 3.5% NaCl solution. Aluminum ions were detected on the surface almost immediately after the immersion of samples W19S and W19F in chloride solution, showing that the electrolyte reached the substrate and galvanic corrosion probably occurred. For sample W19H, aluminum ions were not detected even after 120 min of immersion in NaCl solution. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cr3C2-NiCr and WC-Ni coatings are widely used for wear applications at high and room temperature, respectively. Due to the high corrosion resistance of NiCr binder, Cr3C2-NiCr coatings are also used in corrosive environments. The application of WC-Ni coatings in corrosive media is 14 not recommended due to the poor corrosion resistance of the (pure Ni) metallic matrix. It is well known that the addition of Cr to the metallic binder improves the corrosion properties. Erosion-corrosion performance of thermal spray coatings is widely influenced by ceramic phase composition, the size of ceramic particles and also the composition of the metallic binder. In the present work, two types of HVOF thermal spray coatings (Cr3C2-NiCr and WC-Ni) obtained with different spray conditions were studied and compared with conventional micro-cracked hard chromium coatings. Both as-sprayed and polished samples were tested under two erosion-corrosion conditions with different erosivity. Tungsten carbide coatings showed better performance under the most erosive condition, while chromium carbide coatings were superior under less erosive conditions. Some of the tungsten carbide coatings and hard chromium showed similar erosion-corrosion behaviour under more and less erosive conditions. The erosion-corrosion and electrochemical results showed that surface polishing improved the erosion-corrosion properties of the thermally sprayed coatings. The corrosion behaviour of the different coatings has been compared using Electrochemical Impedance Spectroscopy (EIS) and polarization curves. Total material loss due to erosion-corrosion was determined by weight loss measurements. An estimation of the corrosion contribution to the total weight loss was also given. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the addition of Cr and Nb on the microstructure and the electrochemical corrosion of the weldable, high-strength and stress corrosion cracking (SCC) resistant Al-5%Zn-1.67%Mg-0.23%Cu alloy (H) has been studied. Combined additions of the alloying elements, J (with Nb), L (with Cr) and O (with Cr and Nb) and different heat treatments, ST (cold-rolled), A (annealed), F (quenched), B (quenched and aged) and C (quenched in two steps and aged), to obtain different microstructures and hardness have been performed. To correlate the electrochemical corrosion with the microstructure of the specimens, corrosion potential (E(cor)) measurements in different chloride solutions were performed and optical microscopy, SEM, TEM and EDX were applied. In chloride solutions containing dissolved O-2 or H2O2, the present alloys were polarized up to the pitting attack. It was shown that the E(cor) measurements were very sensitive to the alloy composition and heat treatment, increasing in the order H < J < L < O < Al (for a given heat treatment) and F < A approximate to ST < B < C (for a given alloy). The MgZn2 precipitates of the annealed (A) and cold-rolled (ST) specimens were dissolved in chloride solutions containing oxidizing agents and pitting attack was shown to develop in the cavities where the precipitates were present. In the specimens B and C, the compositions of the precipitate free zones was found to be equal to that of the matrix solid solution and preferential intergranular attack was not evident, this being in agreement with their SCC resistance. The addition of Cr and Nb increased the pitting corrosion resistance. The effects of Cr and Nb were additive, that of Cr being predominant, either, in the E(cor) shift or in the increase in the pitting corrosion resistance.