221 resultados para Copper (II) compounds


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cyanate-bridged cyclopalladated compound [Pd(N,C-dmba)(mu-NCO)](2) (1) (dmba = PhCH2NMe2) reacts in CH2Cl2 with 2,3-lutidine (2,3- lut), 3,4-lutidine (3,4-lut), 2,2'-bipyridine (2,2'-bipy) and 4,4'-bipyridine (4,4'-bipy), to give [Pd(N, C-dmba)(NCO)(2,3-lut)] (2), [Pd(N,C-dmba)(NCO)(3,4-lut)] (3), [{Pd(N,C-dmba)(NCO)}(2)(mu-2,2'-bipy)] .CH2Cl2 (4) and [{Pd(N,C-dmba)(NCO)}(2)(mu-4,4'-bipy)] . CH2Cl2 (5), respectively. The compounds were characterized by elemental analysis, i.r. and n. m. r. spectroscopy and also by t.g.a. The i.r. spectra of (2 - 5) display typical bands of monodentate N-bonded cyanate groups, whereas the n. m. r. data of (4) are consistent with the presence of a bridging 2,2'-bipyridine ligand. Complex (4) decomposes slowly in acetone. One of the products formed, [Pd(H2CCOMe) Cl(2,2'-bipy)] (6), was characterized by X-ray diffraction. As inferred from the t.g.a., the thermal stability decreases in the order: [{Pd(N,C-dmba)(NCO)}(2) (mu-4,4'-bipy)]. CH2Cl2 (5) > [Pd(N,C-dmba)(2,3-lut)( NCO)] (2) = [Pd(N, C-dmba)(3,4-lut)(NCO)] (3) > [{Pd(N,C-dmba)(NCO)}(2)(mu- 2,2'-bipy)] .CH2Cl2 (4). According to thermal analysis and X-ray diffraction patterns compounds (2 - 3) decompose into metallic palladium Pd(0), whereas (4 - 5) decompose with the formation of PdO. The X-ray crystal and molecular structure of [Pd(N, C-dmba)( NCO)(2,3-lut)] (2) was determined. The lutidine unit is perpendicular to the coordination plane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural, magnetic and spectroscopic data of a new trinuclear copper(II) complex with the ligand aspartame (apm) are described. [Cu(apm)(2)CU(mu-N,O:O'-apm)(2)(H2O)Cu(apm)(2)(H2O)]-5H(2)O crystallizes in the triclinic system, space group P1 (#1) with a = 7.3300(1) angstrom, b = 15.6840(1) angstrom, c = 21.5280(1) angstrom, alpha = 93.02(1)degrees, beta = 93.21 (1)degrees, gamma = 92.66(1)degrees and Z = 1. Aspartame coordinates to Cu(II) through the carboxylate and beta-amino groups. The carboxylate groups of the two central ligands act as bidentate bridges in a syn-anti conformation while the carboxylate groups of the four peripheral ligands are monodentate in a syn conformation. The central copper ion is in a distorted square pyramidal geometry with the apical position being occupied by one oxygen atom of the water molecule. The two terminal copper(II) atoms are coordinated to the ligands in the same position but their coordination sphere differs from each other due to the fact that one copper atom has a water molecule in an apical position leading to an octahedral coordination sphere while the other copper atom is exclusively coordinated to aspartame ligands forming a distorted square pyramidal coordination sphere. Thermal analysis is consistent with the X-ray structure. EPR spectra and CV curves indicate a rupture of the trinuclear framework when this complex is dissolved in ethanol or DMF, forming a mononuclear species, with a tetragonal structure. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reactions of the pseudohalide-bridged dimer [Pd(N,C-dmba)(mu -SCN)](2) (1) (dmba = N,N-dimethylbenzylamine) with cis-Ph2PCH=CHPPh2 (cis-dppet) (1:1 molar ratio) and of [Pd(N,C-dmba)(mu -NCO)](2) (2) with Ph2PCH2CH2PPh2 (dppe) (1:2 molar ratio) gave mononuclear [Pd(C-dmba)(SCN)(cis-dppet)].H2O (1a) and [Pd(C-dmba)(NCO)(dppe)] (2a), respectively, with the diphosphines acting as chelating ligands. Reaction of (2) with Fe(C5H4PPh2)(2) (dppf) (1:1 molar ratio) yielded [{Pd(N,C-dmba)(NCO)}(2)(mu -dppf)] (2b), a bimetallic species containing two palladium atoms bridged by the diphosphine, whereas reaction in a 1:2 molar ratio gave the mononuclear [Pd(N,C-dmba)(dppf)][NCO]. CH2Cl2 (2c), with the diphosphine acting as a chelating ligand. The compounds have been characterized by elemental analysis, i.r., P-31{H-1}, C-13- and H-1-n.m.r. spectroscopies. Conductivity measurements together with spectroscopic data showed that (1a) and (2a) do not have the same structure in the solid state and in MeCl solution, whereas for compounds (2b) and (2c) no structural changes were observed when the solids were dissolved in MeCl.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molar single ion activity coefficients associated with hydrogen, copper(II), cadmium(II) and lead(II) ions were determined at 25 degrees C and ionic strengths between 0.100 and 3.00 M (NaClO4), whereas for acetate the ionic strengths were fixed between 0.300 and 2.00 M, held with the same inert electrolyte. The investigation was carried out potentiometrically by using proton-sensitive glass, copper, cadmium and lead ion-selective electrodes and a second-class Hg\Hg-2(CH3COO)(2) electrode. It was found that the activity coefficients of these ions (y(i)) can be assessed through the following empirical equations:log y(H) = -0.542I(0.5) + 0.451I; log y(Cu) = -1.249I(0.5) + 0.912I; log y(Cd) = -0.829I(0.5) + 0.448I(1.5);log y(Pb) = -0.404I(0.5) + 0.117I(2); and log y(Ac) = 0.0370I .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electronic and ESR spectra of the complexes [Cu(II)(tpaso)4][Cu(I)Cl2]2,[Cu(tpaso)4](NO3)2 and [Cu(tpaso)4](ClO. © 1985.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 1:1 mixed-ligand [{Cu(N3)2(diEten)}2] (diEten=N,N-diethylethylenediamine) complex has been synthesized and characterized by i.r. spectroscopy and X-ray diffraction. The compound crystallizes in the triclinic space group P1. Its structure consists of a centrosymmetric Cu2N2 unit whose N atoms belong to end-on azido bridges. Each copper atom is also surrounded by three nitrogen atoms; two from one N, N-diethylethylenediamine, and one from the remaining azide. The five nitrogen atoms altogether occupy the vertices of a slightly distorted trigonal bipyramid, and the azidobridges produced a rather short Cu...Cu distance of 3.37 Å. © 1989 Chapman and Hall Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The compound di-μ-cyanato-bis[{cyanato(N,N-dimethylethylenediamine)} copper(II)] was synthesized, and studied by IR spectroscopy and X-ray diffraction. It is dimeric with bridging and terminal cyanate groups, and the copper atoms show a square-based pyramid coordination geometry. © 1990.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation and characterization of (Ph3AsOH)2[CuBr4] and [Cu(Ph3AsO)4][CuBr4] are reported (Ph3AsO = triphenylarsine oxide). Crystallographic analysis of the monoclinic crystals of (Ph3AsOH)2[CuBr4] (space group C2/c, a = 17.569 (3) Å, b = 13.090 (2) Å, c = 16.933 (2) Å, and β = 105.64 (2)°, R = 0.055 and Rw = 0.057) revealed the presence of compressed [CuBr4]2- tetrahedra of C2 symmetry with Cu-Br distances of 2.340 (1) and 2.437 (1) Å and trans-Br-Cu-Br angles of 139.2 (1) and 122.4 (1)°. The oxonium cations hydrogen bond to the bromine atoms involved in the longer Cu-Br bonds and the smaller trans-Br-Cu-Br angle. Single-crystal electronic and EPR spectra are interpreted in terms of the observed [CuBr4]2- geometry. Analysis of the electronic and EPR spectra of [Cu(Ph3AsO)4][CuBr4] led to the postulation of the presence of planar [Cu(Ph3AsO)4]2+ cations and distorted tetrahedral [CuBr4]2- anions. © 1992 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a theoretical description of ligand field effects in the di-μ-azido- bis[{azido(N,N-diethylethylenediamine)} copper(II)] compound by the Simple Overlap Model. The ligand field Hamiltonian is expressed in terms of irreducible tensor operators for an assumed D3h site symmetry occupied by the copper ion. The ligand field parameters, calculated from the available structural data, indicate that the copper ion is under the influence of a very strong ligand field. The energy of the d-d absorption band is well reproduced phenomenologically by the model.