82 resultados para Computer-Aided Engineering (CAD, CAE)
Resumo:
The representation of real objects in virtual environments has applications in many areas, such as cartography, mixed reality and reverse engineering. The generation of these objects can be performed through two ways: manually, with CAD (Computer Aided Design) tools, or automatically, by means of surface reconstruction techniques. The simpler the 3D model, the easier it is to process and store it. However, this methods can generate very detailed virtual elements, that can result in some problems when processing the resulting mesh, because it has a lot of edges and polygons that have to be checked at visualization. Considering this context, it can be applied simplification algorithms to eliminate polygons from resulting mesh, without change its topology, generating a lighter mesh with less irrelevant details. The project aimed the study, implementation and comparative tests of simplification algorithms applied to meshes generated through a reconstruction pipeline based on point clouds. This work proposes the realization of the simplification step, like a complement to the pipeline developed by (ONO et al., 2012), that developed reconstruction through cloud points obtained by Microsoft Kinect, and then using Poisson algorithm
Resumo:
The representation of real objects in virtual environments has applications in many areas, such as cartography, mixed reality and reverse engineering. The generation of these objects can be performed in two ways: manually, with CAD (Computer Aided Design) tools, or automatically, by means of surface reconstruction techniques. The simpler the 3D model, the easier it is to process and store it. Multiresolution reconstruction methods can generate polygonal meshes in different levels of detail and, to improve the response time of a computer program, distant objects can be represented with few details, while more detailed models are used in closer objects. This work presents a new approach to multiresolution surface reconstruction, particularly interesting to noisy and low definition data, for example, point clouds captured with Kinect sensor
Resumo:
This study aimed to examine the reverse engineering and respond to a concern about the possible application of this concept in art, breaking down barriers and breaking paradigms. Using 3D scanning, the art of computer aided design and manufacturing – CAD/CAM, machining by computer numerical control - CNC, engineering, and applying this methodology in the arts especially in sculpture, it is possible to dematerialize a artwork, virtualizes it in 3D programs, make speeches, and process a new work, a new art elsewhere. By the example of surgeries at a distance, the artist, or technical author could produce their works, and materialize them anywhere. In other words, do the reverse gear. It discusses the relationship between art and technology, the role of the author, the viewer, which can interfere with the interactivity that case by stating that art, exists only in the look and feel of the viewer.
Resumo:
The use of technologies called computedassisted, such as CAD - (Computed Aided Design), CAM - (Computed Aided Manufacturing) and CNC - (Computed Numerical Control), increasingly demanded by the market, are needed in the teaching of subjects technical drawing and design courses for engineering and design. However its use findl barriers in the more conservative wing of the academy, who advocate the use of traditional drawing, for the settling of the concepts and the development of spatial reasoning. This study aimed to show the results obtained with the design and production of an apparatus for measuring a three-dimensional computer-aided milling machine, interaction, integration and consolidation of concepts, fully demonstrating that the learning of computer-assisted technology is possible, and its use is most appropriate, meaningful and productive, than the use of instruments in the classic design.
Resumo:
Regardless its power rate, the tractors are the most used source in operations of tillage. Thus, due to the expansion of cultivated areas and the need of striking application of technologies to meet the advance of agribusiness, it has been shown that these machines are concentrated during the work periods, the physical and mechanical actions to perform the activity. So, it's possible to realize that the time of physical exposures and the operational decision-making are related with the job station comfort. In regard to what was mentioned, this paper's main objective is to design an ergonomically viable seat to furnish the operational requirements of the tractor driver, using the new CAD / CAE technologies in order to provide optimal comfort to the relationship between human being and machines.
Resumo:
The communication between user and software is a basic stage in any Interaction System project. In interactive systems, this communication is established by the means of a graphical interface, whose objective is to supply a visual representation of the main entities and functions present in the Virtual Environment. New ways of interacting in computational systems have been minimizing the gap in the relationship between man and computer, and therefore enhancing its usability. The objective of this paper, therefore, is to present a proposal for a non-conventional user interface library called ARISupport, which supplies ARToolKit applications developers with an opportunity to create simple GUI interfaces, and provides some of the functionality used in Augmented Reality systems. © Springer-Verlag Berlin Heidelberg 2005.
Resumo:
This paper presents models that can be used in the design of microstrip antennas for mobile communications. The antennas can be triangular or rectangular. The presented models are compared with deterministic and empirical models based on artificial neural networks (ANN) presented in the literature. The models are based on Perceptron Multilayer (PML) and Radial Basis Function (RBF) ANN. RBF based models presented the best results. Also, the models can be embedded in CAD systems, in order to design microstrip antennas for mobile communications.
Resumo:
The mapping of the land use, vegetation and environmental impacts using remote sensing and geoprocessing allows detection, spatial representation and quantifying all alterations due to the human action in the nature, contributing to the monitoring and planning of those activities that cause damages to the environment. The aim of this research is analyze the transformation ocurred with the land use and vegetation in order to detect environmental impacts during the period from 1962 to 1995, considering a test area in the district of Assistência and surroundings, in the Rio Claro (SP) region. In order to archieve such aim the authors used boolean operations available in the Geographical Information System (GIS) - Idrisi. The maps were obtained through the ordinary (conventional) interpretation of aerial photos, later digitized in the software CAD Overlay and georeferenced in AutoCAD Map. It's observed that operations such as crossing digitized maps of one specific area in two differents dates, using GIS, produce overall results that might point out expansion or retraction's trends of the mapped classes, as well as quantify the intensity of the phenomena.
Resumo:
The mapping of the land use, vegetation and environmental impacts using remote sensing ana geoprocessmg allow detection, spatial representation and quantification of the alterations caused by the human action on the nature, contributing to the monitoring and planning of those activities that may cause damages to the environment. This study apply methodologies based on digital processing of orbital images for the mapping of the land use, vegetation and anthropic activities that cause impacts in the environment. It was considered a test area in the district of Assistência and surroundings, in Rio Claro (SP) region. The methodology proposed was checked through the crossing of maps in the software GIS - Idrisi. These maps either obtained with conventional interpretation of aerial photos of 1995, digitized in the software CAD Overlay and geo-referenced in the AutoCAD Map, or with the application of digital classification systems on SPOT-XS and PAN orbital images of 1995, followed by field observations. The crossing of conventional and digital maps of a same area with the CIS allows to verify the overall results obtained through the computational handling of orbital images. With the use of digital processing techniques, specially multiespectral classification, it is possible to detect automatically and visually the impacts related to the mineral extraction, as well as to survey the land use, vegetation and environmental impacts.
Resumo:
The main purpose of this work is the development of computational tools in order to assist the on-line automatic detection of burn in the surface grinding process. Most of the parameters currently employed in the burning recognition (DPO, FKS, DPKS, DIFP, among others) do not incorporate routines for automatic selection of the grinding passes, therefore, requiring the user's interference for the choice of the active region. Several methods were employed in the passes extraction; however, those with the best results are presented in this article. Tests carried out in a surface-grinding machine have shown the success of the algorithms developed for pass extraction. Copyright © 2007 by ABCM.
Resumo:
This paper describes a software tool, called LEVSOFT, suitable for the electric field simulations of corona electrodes by the Finite Element Method (FEM). Special attention was paid to the user friendly construction of geometries with corners and sharp points, and to the fast generation of highly refined triangular meshes and field maps. The execution of self-adaptive meshes was also implemented. These customized features make the code attractive for the simulation of needle-type corona electrodes. Some case examples involving needle type electrodes are presented.
Resumo:
This paper considers the importance of using a top-down methodology and suitable CAD tools in the development of electronic circuits. The paper presents an evaluation of the methodology used in a computational tool created to support the synthesis of digital to analog converter models by translating between different tools used in a wide variety of applications. This tool is named MS 2SV and works directly with the following two commercial tools: MATLAB/Simulink and SystemVision. Model translation of an electronic circuit is achieved by translating a mixed-signal block diagram developed in Simulink into a lower level of abstraction in VHDL-AMS and the simulation project support structure in SystemVision. The method validation was performed by analyzing the power spectral of the signal obtained by the discrete Fourier transform of a digital to analog converter simulation model. © 2011 IEEE.
Resumo:
This paper describes a program for the automatic generation of code for Intel's 8051 microcontroller. The code is generated from a place-transition Petri net specification. Our goal is to minimize programming time. The code generated by our program has been observed to exactly match the net model. It has also been observed that no change is needed to be made to the generated code for its compilation to the target architecture. © 2011 IFAC.
Resumo:
The aim of the present study was to evaluate the effect of disinfection and accelerated ageing on the dimensional stability and detail reproduction of a facial silicone with different types of nanoparticle. A total of 60 specimens were fabricated with Silastic MDX 4-4210 silicone and they were divided into three groups: colourless and pigmented with nanoparticles (make-up powder and ceramic powder). Half of the specimens of each group were disinfected with Efferdent tablets and half with neutral soap for 60 days. Afterwards, all specimens were subjected to accelerated ageing. Both dimensional stability and detail reproduction tests were performed after specimen fabrication (initial period), after chemical disinfection, and after accelerated ageing periods (252, 504 and 1008 hours). The dimensional stability test was conducted using AutoCAD software, while detail reproduction was analysed using a stereoscope magnifying glass. Dimensional stability values were statistically evaluated by analysis of variance (ANOVA) followed by Tukey's test (p < 0.01). Detail reproduction results were compared using a score. Chemical disinfection and also accelerated ageing affected the dimensional stability of the facial silicone with statistically significant results. The silicone's detail reproduction was not affected by these two factors regardless of nanoparticle type, disinfection and accelerated ageing. © 2012 Informa UK, Ltd.
Resumo:
Patients with congenital malformations, traumatic or pathological mutilation and maxillofacial developmental disorders can be restored aesthetically and emotionally by the production and use of facial prostheses. The aim of this study was to review the literature about the retention and processing methods of facial prostheses, and discuss their characteristics. A literature review on Medline (PubMed) database was performed by using the keywords maxillofacial prosthesis, silicone, resin, pigment, cosmetic, prosthetic nose, based on articles published from 1956 to 2010. Several methods of retention, from adhesives to the placement of implants, and different processing methods such as laser, CAD/CAM and rapid prototyping technologies have been reported. There are advantages and disadvantages of each procedure, and none can be classified as better compared to others.