81 resultados para Computer Modelling, Interstitial Fluid Flow, Transport Mechanism, Functional Adaptation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conductivity of H2SiF6-doped emeraldine polymers is studied as a function of temperature in the range 50 less than or equal to T less than or equal to 180 K. The dopant concentration of the samples varies between 0.1 M and 1.0 M. The temperature dependence of the do electrical conductivity gives evidence for a transport mechanism based on variable-range hopping in three dimensions. Using Mott's formula for the de conductivity, physically meaningful values of the density of states at the Fermi energy, the hopping energy and hopping distance are calculated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thoracic, abdominal, and pelvic fragments of ventral skin of Rana catesbeiana were analysed regarding the effect of oxytocin on: (1) transepithelial water transport; (2) short-circuit current, (3) skin conductance and electrical potential difference; (4) Na+ conductance, the electromotive force of the Nat transport mechanism, and shunt conductance; (5) short-circuit current responses to fast Na+ by K+ replacement in the outer compartment, and (6) epithelial microstructure. Unstimulated water and Na+ permeabilities were low along the ventral skin. Hydrosmotic and natriferic responses to oxytocin increased from thorax to pelvis, Unstimulated Na+ conductance was greater in pelvis than in abdomen, the other electrical parameters being essentially similar in both skin fragments. Contribution of shunt conductance to total skin conductance was higher in abdominal than in pelvic skin. Oxytocin-induced increases of total skin conductance, Na+ conductance, and shunt conductance in pelvis were significantly larger than in abdomen, An oscillatory behaviour of the short-circuit current was observed only in oxytocin-treated pelvic skins. Decrease of epithelial thickness and increase of mitochondria-rich cell number were observed from thorax to pelvis, Oxytocin-induced increases of interspaces were more conspicuous in pelvis and abdomen than in thorax.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transient non-Darcy forced convection on a flat plate embedded in a porous medium is investigated using the Forchheimer-extended Darcy law. A sudden uniform pressure gradient is applied along the flat plate, and at the same time, its wall temperature is suddenly raised to a high temperature. Both the momentum and energy equations are solved by retaining the unsteady terms. An exact velocity solution is obtained and substituted into the energy equation, which then is solved by means of a quasi-similarity transformation. The temperature field can be divided into the one-dimensional transient (downstream) region and the quasi-steady-state (upstream) region. Thus the transient local heat transfer coefficient can be described by connecting the quasi-steady-state solution and the one-dimensional transient solution. The non-Darcy porous inertia works to decrease the velocity level and the time required for reaching the steady-state velocity level. The porous-medium inertia delays covering of the plate by the steady-state thermal boundary layer. © 1990.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Classical shell-and-tube heat exchangers are usually equipped with segmental baffles. These baffles serve two basic functions: (a) they provide tube supports, thereby preventing or reducing mechanical problems, such as sagging or vibration; (b) they direct the fluid flow over the tubes so as to introduce a cross-flow component, thereby increasing the heat transfer. Segmented baffles have several sources of performance loss, some due to various leakage flows and others caused by stagnation zones. A new concept of longitudinal flow heat exchanger - based on placing twisted tapes along the tube bundle subchannels - was developed to mitigate drawbacks of other types of tubular heat exchangers. In this paper, a numerical model has been implemented in order to simulate the thermal-hydraulic feature of tubular heat exchangers equipped either with segmental baffles or with subchannel twisted tapes. The tube bundle has been described by means of an equivalent porous medium type model, allowing a macroscopic description of the shell-side flow. The basic equations - continuity, momentum and energy - have been solved by using the finite volume method. Typical numerical results have been compared with experimental data, reaching a very good agreement. A comparative analysis of different types of heat exchangers has been carried out, revealing the satisfactory thermal-hydraulic efficiency level of the twisted tapes heat exchangers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different (Sn,Ti)O2 compositions were sintered at 1450 °C for 2 h with the purpose of investigating their sintering and mass transport properties. Highly dense ceramics were obtained and their structural properties studied by X-ray diffraction and scanning electron microscopy. The changes in lattice parameters were analyzed by the Rietveld method and two mass transport mechanisms were observed during sintering in different temperature ranges, evidenced by the linear shrinkage rate as a function of temperature. The effect of the concentration of TiO2 on mass transport and densiffication during sintering was analyzed by considering the intrinsic defects. System densiffication was attributed to a mass transport mechanism in the SnO2 matrix, caused by the presence of TiO2, which formed a solid solution phase. The change in the mass transport mechanism was attributed to chemical bonding between SnO2 and TiO2, which improves ionic difusion as the concentration of TiO2 increased in (Sn,Ti)O2 compositions. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat-transfer studies were carried out in a packed bed of glass beads, cooled by the wall, through which air percolated. Tube-to-particle diameter ratios (D/dp) ranged from 1.8 to 55, while the air mass flux ranged from 0.204 to 2.422 kg/m2·s. The outlet bed temperature (TL) was measured by a brass ring-shaped sensor and by aligned thermocouples. The resulting radial temperature profiles differed statistically. Angular temperature fluctuations were observed through measurements made at 72 angular positions. These fluctuations do not follow a normal distribution around the mean for low ratios D/dp. The presence of a restraining screen, as well as the increasing distance between the temperature measuring device and the bed surface, distorts TL. The radial temperature profile at the bed entrance (T0) was measured by a ring-shaped sensor, and T 0 showed to be a function of the radial position, the particle diameter, and the fluid flow rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES: The loss of resistance to air to identify the epidural space is widely used. However, the accidental perforation of the dura mater is one of the possible complications of this procedure, with an estimated incidence between 1% and 2%. The objective of this report was to describe the case of a patient with intraventricular pneumocephalus after the accidental perforation of the dura mater using the loss of resistance with air technique. CASE REPORT: Female patient, 26 years old, 75 kg, 1.67 m, physical status ASA I, with a 38-week pregnancy, was referred to the obstetric service for a cesarean section. Venipuncture was performed after placement of the monitoring. The patient was placed in a sitting position for administration of the epidural anesthesia. During the identification of the epidural space with the loss of resistance with air technique, an accidental perforation of the dura mater was diagnosed by observing free flow of CSF through the needle. The technique was modified to epidural anesthesia and anesthetics were administered by the needle placed in the subarachnoid space. In the first 24 hours, the patient developed headache and she was treated with caffeine, dypirone, hydration, hydrocortisone, and bed rest; despite those measures, the patient's symptoms worsened and evolved to headache in decubitus. A CT scan of the head showed the presence of pneumocephalus. After evaluation by a specialist, the patient remained under observation, with progressive improvement of the symptoms and was discharged from the hospital in the fifth day, without complications. CONCLUSIONS: Pneumocephalus after accidental perforation of the dura mater presented headache with the characteristics of headache secondary to loss of CSF, but with spontaneous resolution after the air was absorbed. Invasive measures, such as epidural blood patch, were not necessary. © Sociedade Brasileira de Anestesiologia, 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe and begin to evaluate a parameterization to include the vertical transport of hot gases and particles emitted from biomass burning in low resolution atmospheric-chemistry transport models. This sub-grid transport mechanism is simulated by embedding a 1-D cloud-resolving model with appropriate lower boundary conditions in each column of the 3-D host model. Through assimilation of remote sensing fire products, we recognize which columns have fires. Using a land use dataset appropriate fire properties are selected. The host model provides the environmental conditions, allowing the plume rise to be simulated explicitly. The derived height of the plume is then used in the source emission field of the host model to determine the effective injection height, releasing the material emitted during the flaming phase at this height. Model results are compared with CO aircraft profiles from an Amazon basin field campaign and with satellite data, showing the huge impact that this mechanism has on model performance. We also show the relative role of each main vertical transport mechanisms, shallow and deep moist convection and the pyro-convection (dry or moist) induced by vegetation fires, on the distribution of biomass burning CO emissions in the troposphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The FENE-CR model is investigated through a numerical algorithm to simulate the time-dependent moving free surface flow produced by a jet impinging on a flat surface. The objective is to demonstrate that by increasing the extensibility parameter L, the numerical solutions converge to the solutions obtained with the Oldroyd-B model. The governing equations are solved by an established free surface flow solver based on the finite difference and marker-and-cell methods. Numerical predictions of the extensional viscosity obtained with several values of the parameter L are presented. The results show that if the extensibility parameter L is sufficiently large then the extensional viscosities obtained with the FENE-CR model approximate the corresponding Oldroyd-B viscosity. Moreover, the flow from a jet impinging on a flat surface is simulated with various values of the extensibility parameter L and the fluid flow visualizations display convergence to the Oldroyd-B jet flow results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)