43 resultados para Combustion chambers
Resumo:
This work presents the preparation of SrBi2Nb2O9 (SBN) directly by the combustion synthesis. Strontium nitrate, niobium ammonium oxalate (NH4H2[NbO-(C2O4)(3)].3H(2)O) and bismuth oxide were used as oxidant reactants and urea as fuel. The influence of the fuel was evaluated by the addition of different fuel amounts (50%, 100%, 200% and 300%), 100% being the stoichiometric proportion. The XRD patterns showed that the SBN perovskite crystallized as the majority phase. The as-synthesized stoichiometric powder presented a specific surface area of around 13 m(2)/g and a mean grain size of around 16 nm. Dilatometric measurements showed that the maximum sintering rate occurs at 1275degreesC. The determination of the ferroparaelectric transition showed a Curie temperature (T-c) of 429degreesC. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The pulsating combustion process has won interest in current research due to indications that its application in energy generation can offer several advantages, such as: fuel economy, reduced pollutants formation, increased rate of convective heat transfer and reduced investment, when compared with conventional techniques. An experimental study has been conducted with the objective of investigating the effects of combustion driven acoustic oscillations in the emission rates of combustion gases, especially carbon monoxide and nitrogen oxides. The experiments were conducted in a water-jacketed 1-m long by 25-cm internal diameter stainless steel vertical tube. The combustor operated with liquefied petroleum gas (LPG) in both oscillatory and non oscillatory conditions, under the same input conditions. Part of the reactant mixture was excited acoustically, before the burner exit, by a speaker positioned strategically. The burner was aligned with the chamber longitudinal axis and positioned at its bottom. The experiments were conducted for 0.16 g/s of LPG burning in stoichiometric equivalence ratio. The main conclusions were: a) the pulsating combustion process produces more uniform fuel/air profile than the non pulsating process, b) close to stoichiometric equivalence ratio the pulsating combustion process generates higher rates of NO x; c) the frequency has a strong influence in NO x emission, but the pressure amplitude has a weak influence; d) the presence of the acoustic field may change drastically the combustion gas emissions in diffusion flames, but in pre-mixed flames the influence is not as strong.
Resumo:
Lanthanum chromite (LaCrO3) is one of the most adequate materials for use as interconnector in solid oxide fuel cell (SOFC) applications, due to its intrinsic properties, namely its good electrical conductivity and resistance to environment conditions in fuel cell operations. Due to difficulties in sintering, additives are usually added to help in the densification process. In this work, the influence of added cobalt and strontium, in the sintering of LaCrO3 obtained by combustion synthesis was studied. The starting materials were respectively nitrates of chromium, lanthanum, cobalt and strontium, and urea was used as fuel. The results show that by increasing the strontium and cobalt concentrations it is possible to reduce the temperature of sintering. Using both additives, the sintering processes took place in lesser times than normally used for this material, as well as greater values of density were attained.
Resumo:
Studies of the performance of the CMS drift tube barrel muon system are described, with results based on data collected during the CMS Cosmic Run at Four Tesla. For most of these data, the solenoidal magnet was operated with a central field of 3.8 T. The analysis of data from 246 out of a total of 250 chambers indicates a very good muon reconstruction capability, with a coordinate resolution for a single hit of about 260 μm, and a nearly 100% efficiency for the drift tube cells. The resolution of the track direction measured in the bending plane is about 1.8 mrad, and the efficiency to reconstruct a segment in a single chamber is higher than 99%. The CMS simulation of cosmic rays reproduces well the performance of the barrel muon detector. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
In October and November 2008, the CMS collaboration conducted a programme of cosmic ray data taking, which has recorded about 270 million events. The Resistive Plate Chamber system, which is part of the CMS muon detection system, was successfully operated in the full barrel. More than 98% of the channels were operational during the exercise with typical detection efficiency of 90%. In this paper, the performance of the detector during these dedicated runs is reported. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47μm to 243μm. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
The alignment system for the muon spectrometer of the CMS detector comprises three independent subsystems of optical and analog position sensors. It aligns muon chambers with respect to each other and to the central silicon tracker. System commissioning at full magnetic field began in 2008 during an extended cosmic ray run. The system succeeded in tracking muon detector movements of up to 18 mm and rotations of several milliradians under magnetic forces. Depending on coordinate and subsystem, the system achieved chamber alignment precisions of 140-350 μm and 30-200 μrad, close to the precision requirements of the experiment. Systematic errors on absolute positions are estimated to be 340-590 μm based on comparisons with independent photogrammetry measurements. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
Some wild species of the genus Arachis have demonstrated potential for improvement of peanuts. This work was performed to evaluate the occurrence and symptoms of Enneothrips flavens and Stegasta bosquella and its effects on agronomic traits of wild Arachis accessions. Nine accessions of wild Arachis species and a commercial A. hypogaea variety were studied in a split plot statistical scheme with a completely randomized block design and four replications. The main plots consisted of plants sprayed or not sprayed for insect control, while the subplots comprised the peanut accessions. Accessions GKP10017 (A. cardenasii) and V7639 (A. kuhlmannii) showed the lowest percentages of leaflets with E. flavens and S. bosquella. Accessions V9912, V7639 and V8979 (all three A. kuhlmannii) and V13250 (A. kempff-mercadoi) showed the lowest responses to insecticide application among the various plant traits evaluated. These accessions are of interest for further studies to identify mechanisms of resistance, to be used in breeding programs for resistance to these insects.
Resumo:
Experiments of biomass combustion were performed to determine whether specimen size, tray inclination, or combustion air flow rate was the factor that most affects the emission of carbon dioxide, carbon monoxide, and methane. The chosen biomass was Eucalyptus citriodora, a very abundant species in Brazil, utilized in many industrial applications, including combustion for energy generation. Analyses by gas chromatograph and specific online instruments were used to determine the concentrations of the main emitted gases, and the following figures were found for the emission factors: 1400 ± 101 g kg-1 of CO2, 50 ± 13 g kg-1 of CO, and 3.2 ± 0.5 g kg-1 of CH4, which agree with values published in the literature for biomass from the Amazon rainforest. Statistical analysis of the experiments determined that specimen size most significantly affected the emission of gases, especially CO2 and CO. •Statistical analysis to determine effects on emission factors.•CO2, CO, CH4 emission factors determined for combustion of Eucalyptus.•Laboratory results agreed with data for Amazonian biomass combustion in field tests.•Combustion behavior under flaming and smoldering was analyzed. © 2013 Elsevier Ltd.
Resumo:
The demand for petroleum has been rising rapidly due to increasing industrialization and modernization. This economic development has led to a huge demand for energy, most of which is derived from fossil fuel. However, the limited reserve of fossil fuel has led many researchers to look for alternative fuels which can be produced from renewable feedstock. Increasing fossil fuel prices have prompted the global oil industry to look at biodiesel, which is from renewable energy sources. Biodiesel is produced from animal fats and vegetable oils and has become more attractive because it is more environmentally friendly and is obtained from renewable sources. Glycerol is the main by-product of biodiesel production; about 10% of the weight of biodiesel is generated in glycerol. The large amount of glycerol generated may become an environmental problem, since it cannot be disposed of in the environment. In this paper, an attempt has been made to review the different approaches and techniques used to produce glycerol (hydrolysis, transesterification, refining crude glycerol). The world biodiesel/glycerol production and consumption market, the current world glycerin and glycerol prices as well as the news trends for the use of glycerol mainly in Brazil market are analyzed. The technological production and physicochemical properties of glycerol are described, as is the characterization of crude glycerol obtained from different seed oil feedstock. Finally, a simple way to use glycerol in large amounts is combustion, which is an advantageous method as it does not require any purification. However, the combustion process of crude glycerol is not easy and there are technological difficulties. The news and mainly research about the combustion of glycerol was also addressed in this review. © 2013 Elsevier Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this study, the flocculation process in continuous systems with chambers in series was analyzed using the classical kinetic model of aggregation and break-up proposed by Argaman and Kaufman, which incorporates two main parameters: K (a) and K (b). Typical values for these parameters were used, i. e., K (a) = 3.68 x 10(-5)-1.83 x 10(-4) and K (b) = 1.83 x 10(-7)-2.30 x 10(-7) s(-1). The analysis consisted of performing simulations of system behavior under different operating conditions, including variations in the number of chambers used and the utilization of fixed or scaled velocity gradients in the units. The response variable analyzed in all simulations was the total retention time necessary to achieve a given flocculation efficiency, which was determined by means of conventional solution methods of nonlinear algebraic equations, corresponding to the material balances on the system. Values for the number of chambers ranging from 1 to 5, velocity gradients of 20-60 s(-1) and flocculation efficiencies of 50-90 % were adopted.
Resumo:
This work focuses on the study of BaMgAl10O17:Eu2+ (BAM:Eu) nanophosphors prepared by a microwave-assisted combustion procedure and more especially on the polymer/BAM:Eu nanocomposite film suitable for optical devices such as solid-state-lighting. Powder presented a specific nanomorphology, highly friable and thus easily ground into fine particles. They were then homogeneously dispersed into a polymer solution (poly(N-vinylpyrrolidone) or PVP) to elaborate a polymer phosphor nanocomposite. The structural, morphological and optical features of the nanocomposite film have been studied and compared to those of a pristine PVP film and BAM:Eu powder. All the characterizations (XRD, SEM, SAXS, etc.) proved that the blue phosphor nanoparticles are well incorporated into the polymer nanocomposite film which exhibited the characteristic blue emission of Eu2+ under UV light excitation. Furthermore, the photostability of the polymer/phosphor nanocomposite film has been studied after exposure to accelerated artificial photoageing at wavelengths above 300 nm.