36 resultados para Colombeau algebra
Resumo:
We propose general three-dimensional potentials in rotational and cylindrical parabolic coordinates which are generated by direct products of the SO(2, 1) dynamical group. Then we construct their Green functions algebraically and find their spectra. Particular cases of these potentials which appear in the literature are also briefly discussed.
Resumo:
We obtain the exact classical algebra obeyed by the conserved non-local charges in bosonic non-linear sigma models. Part of the computation is specialized for a symmetry group O(N). As it turns out the algebra corresponds to a cubic deformation of the Kac-Moody algebra. We generalize the results for the presence of a Wess-Zumino term. The algebra is very similar to the previous one, now containing a calculable correction of order one unit lower. The relation with Yangians and the role of the results in the context of Lie-Poisson algebras are also discussed.
Resumo:
We defined generalized Heaviside functions for a variable x in R-n, and for variables (x, t) in R-n x R-m. Then study properties such as: composition, invertibility, and association relation (the weak equality). This work is developed in the Colombeau generalized functions context.
Resumo:
The Dirac wave equation is obtained in the non-Riemannian manifold of the Einstein-Schrödinger nonsymmetric theory. A new internal connection is determined in terms of complex vierbeins, which shows the coupling of the electromagnetic potential with gravity in the presence of a spin-1/2 field. © 1988 American Institute of Physics.
Resumo:
As recently shown the conformal affine Toda models can be obtained via hamiltonian reduction from a two-loop Kac-Moody algebra. In this paper we propose a systematic procedure to analyze the higher spin symmetries of the conformal affine Toda models. The method is based on an explicit construction of infinite towers of extended conformal symmetry generators. Two fundamental building blocks of this construction are special spin-one and -two primary fields characterizing the conformal structure of these models. The connection to the algebra of area preserving diffeomorphisms on a two-manifold (w∞ algebra) is established.
Resumo:
We comment on the off-critical perturbations of WZNW models by a mass term as well as by another descendent operator, when we can compare the results with further algebra obtained from the Dirac quantization of the model, in such a way that a more general class of models be included. We discover, in both cases, hidden Kac-Moody algebras obeyed by some currents in the off-critical case, which in several cases are enough to completely fix the correlation functions.
Resumo:
The Green's functions of the recently discovered conditionally exactly solvable potentials are computed. This is done through the use of a second-order differential realization of the so(2,1) Lie algebra. So we present the dynamical symmetry underlying the solvability of such potentials and show that they belong to a general class of solvable and partially solvable potentials. © 1994 The American Physical Society.
Resumo:
We discuss a relativistic free particle with fractional spin in 2+1 dimensions, where the dual spin components satisfy the canonical angular momentum algebra {Sμ, Sν} = εμνγSγ. It is shown that it is a general consequence of these features that the Poincaré invariance is broken down to the Lorentz one, so indicating that it is not possible to keep simultaneously the free nature of the anyon and the translational invariance.
Resumo:
A simple procedure to obtain complete, closed expressions for Lie algebra invariants is presented. The invariants are ultimately polynomials in the group parameters. The construction of finite group elements requires the use of projectors, whose coefficients are invariant polynomials. The detailed general forms of these projectors are given. Closed expressions for finite Lorentz transformations, both homogeneous and inhomogeneous, as well as for Galilei transformations, are found as examples.
Resumo:
The free action for the massless sector of the type II superstring was recently constructed using closed Ramond-Neveo-Schwarz superstring field theory. The supersymmetry transformations of this action are shown to satisfy an N = 2 D = 10 supersymmetry algebra with Ramond-Ramond central charges.
Resumo:
In this paper we employ the construction of the Dirac bracket for the remaining current of sl(2) q deformed Kac-Moody algebra when constraints similar to those connecting the sl(2)-Wess-Zumino-Witten model and the Liouville theory are imposed to show that it satisfies the q-Virasoro algebra proposed by Frenkel and Reshetikhin The crucial assumption considered in our calculation is the existence of a classical Poisson bracket algebra induced in a consistent manner by the correspondence principle, mapping the quantum generators into commuting objects of classical nature preserving their algebra.
Resumo:
In this article, we present quasiconformal mappings related to octonionic algebra. Based on the metric definition of quasiconformal mappings and using transformations of the type f(z)=zn, we compare the graphical and analytic results. © 2009 Pushpa Publishing House.
Resumo:
The rule creation to clone selection in different projects is a hard task to perform by using traditional implementations to control all the processes of the system. The use of an algebraic language is an alternative approach to manage all of system flow in a flexible way. In order to increase the power of versatility and consistency in defining the rules for optimal clone selection, this paper presents the software OCI 2 in which uses process algebra in the flow behavior of the system. OCI 2, controlled by an algebraic approach was applied in the rules elaboration for clone selection containing unique genes in the partial genome of the bacterium Bradyrhizobium elkanii Semia 587 and in the whole genome of the bacterium Xanthomonas axonopodis pv. citri. Copyright© (2009) by the International Society for Research in Science and Technology.
Resumo:
We show that the BRST cohomology of the massless sector of the Type IIB superstring on AdS(5) x S (5) can be described as the relative cohomology of an infinite-dimensional Lie superalgebra. We explain how the vertex operators of ghost number 1, which correspond to conserved currents, are described in this language. We also give some algebraic description of the ghost number 2 vertices, which appears to be new. We use this algebraic description to clarify the structure of the zero mode sector of the ghost number two states in flat space, and initiate the study of the vertices of the higher ghost number.