29 resultados para Clusia rosea
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Electron microscopy and immunolabelling with antiserum specific to cucumber mosaic virus coat protein were used to examine tobacco leaf cells infected by cucumber mosaic virus isolated from Catharanthus roseus (CMV-Cr). Crystalline and amorphous inclusions in the vacuoles were the most obvious cytological modifications seen. Immunogold labelling indicated that the crystalline inclusion was made up of virus particles and amorphous inclusions contained coat protein. Rows of CMV-Cr particles were found between membranes of dictyosomes, but membranous bodies and tonoplast-associated vesicles were not evident. Virus particles and/or free coat protein were easily detected in the cytoplasm by immunolabelling. No gold labelling was found within nuclei, chloroplasts and mitochondria.
Resumo:
Until recently, the rhynchonelliform (articulated) brachiopod fauna from the Brazilian continental shelf (western South Atlantic) was represented only by the endemic species Bouchardia rosea (Mawe), reported from coastal waters of the states of São Paulo and Rio de Janeiro. The present study, based on samples from coastal (<30 m), shelf, and continental slope waters (99-485 m), documents the South Atlantic brachiopod fauna and shows that this fauna is more widespread, diverse, and cosmopolitan than previously thought. Based on a total of 16,177 specimens, the following brachiopods have been identified: Bouchardia rosea (Family Bouchardiidae), Platidia anomioides (Family Platidiidae), Argyrotheca cf. cuneata (Family Megathyrididae), and Terebratulina sp. (Family Cancellothyrididae). In coastal settings, the fauna is overwhelmingly dominated by Bouchardia rosea. Rare juvenile (<2 mm) specimens of Argyrotheca cf. cuneata were also found at two shallow-water sites. In shelf settings (100-200 m), the fauna is more diverse and includes Bouchardia rosea, Terebratulina sp., Argyrotheca cf. cuneata, and Platidia anomioides. Notably, Bouchardia rosea was found in waters as deep as 485 m, extending the known bathymetric range of this genus. Also, the record of this brachiopod in waters of the state of Parana is the southernmost known occurrence of this species. The genera Platidia and Terebratulina are documented here for the first time for the western South Atlantic. The Brazilian brachiopod fauna shares similarities with those from the Atlantic and Indian shelves of southern Africa, and from the Antarctic, Caribbean and Mediterranean waters. The present-day brachiopods of the western South Atlantic are much more cosmopolitan than previously thought and their Cenozoic palaeobiogeographic history has to be reconsidered from that perspective.
Resumo:
The extent of racemization of aspartic acid (Asp) has been used to estimate the ages of 9 shells of the epifaunal calcitic brachiopod Bouchardia rosea and 9 shells of the infaunal aragonitic bivalve Semele casali. Both taxa were collected concurrently from the same sites at depths of 10 m and 30 m off the coast of Brazil. Asp D/L values show an excellent correlation with radiocarbon age at both sites and for both taxa (r(Site)(2) (9) (B. rosea) = 0.97 r(Site)(2) (1) (B.) (rosea) = 0.997, r(Site)(2) (9) (S.) (casali) = 0.9998, r(2) (Site) (1) (S.casali) = 0.93). The Asp ratios plotted against reservoir-corrected AMS radiocarbon ages over the time span of multiple millennia can thus be used to develop reliable and precise geochronologies not only for aragonitic mollusks (widely used for dating previously), but also for calcitic brachiopods. At each collection site, Bouchardia specimens display consistently higher D/L values than specimens of Semele. Thermal differences between sites are also notable and in agreement with theoretical expectations, as extents of racemization for both taxa are greater at the warmer, shallower site than at the cooler, deeper one. In late Holocene marine settings, concurrent time series of aragonitic and calcitic shells can be assembled using Asp racemization dating, and parallel multi-centennial to multi-millennial records can be developed simultaneously for multiple biomineral systems. (c) 2006 University of Washington. All rights reserved.
Resumo:
Quantitative estimates of time-averaging in marine shell accumulations available to date are limited primarily to aragonitic mollusk shells. We assessed time-averaging in Holocene assemblages of calcitic brachiopod shells by direct dating of individual specimens of the terebratulid brachiopod Bouchardia rosea. The data were collected from exceptional (brachiopod-rich) shell assemblages, occurring surficially on a tropical mixed carbonate-siliciclastic shelf (the Southeast Brazilian Bight, SW Atlantic), a setting that provides a good climatic and environmental analog for many Paleozoic brachiopod shell beds of North America and Europe. A total of 82 individual brachiopod shells, collected from four shallow (5-25 m) nearshore (<2.5 km from the shore) localities, were dated by using amino acid racemization (D-alloisoleucine/L-isoleucine value) calibrated with five AMS-radiocarbon dates (r(2) = 0.933). This is the first study to demonstrate that amino acid racemization methods can provide accurate and precise ages for individual shells of calcitic brachiopods.The dated shells vary in age from modern to 3000 years, with a standard deviation of 690 years. The age distribution is strongly right-skewed: the young shells dominate the dated specimens and older shells are increasingly less common. However, the four localities display significant differences in the range of time-averaging and the form of the age distribution. The dated shells vary notably in the quality of preservation, but there is no significant correlation between taphonomic condition and age, either for individual shells or at assemblage level.These results demonstrate that fossil brachiopods may show considerable time-averaging, but the scale and nature of that mixing may vary greatly among sites. Moreover, taphonomic condition is not a reliable indicator of pre-burial history of individual brachiopod shells or the scale of temporal mixing within the entire assemblage. The results obtained for brachiopods are strikingly similar to results previously documented for mollusks and suggest that differences in mineralogy and shell microstructure are unlikely to be the primary factors controlling the nature and scale of time-averaging. Environmental factors and local fluctuations in populations of shell-producing organisms are more likely to be the principal determinants of time-averaging in marine benthic shelly assemblages. The long-term survival of brachiopod shells is incongruent with the rapid shell destruction observed in taphonomic experiments. The results support the taphonomic model that shells remain protected below (but perhaps near) the surface through their early taphonomic history. They may be brought back up to the surface intermittently by bioturbation and physical reworking, but only for short periods of time. This model explains the striking similarities in time-averaging among different types of organisms and the lack of correlation between time-since-death and shell taphonomy.
Resumo:
Over 14,000 specimens-5,204 brachiopods, 9,137 bivalves, and 178 gastropods-acquired from 30 collecting stations (0 to 45 m depth) in the Ubatuba and Picinguaba bays, southern Brazil, were compared for drilling frequencies. Beveled (countersunk) circular-to-subcircular borings (Oichnus-like drill holes) were found in diverse bivalves but also in the rhynchonelliform brachiopod Bouchardia rosea-a small, semi-infaunal to epifaunal, free-lying species that dominates the brachiopod fauna of the southern Brazilian shelf. Drill holes in bivalve mollusks and brachiopods are comparable in their morphology, average diameter, and diameter range, indicating attacks by a single type of drilling organism. Drill holes in brachiopods were rare (0.4%) and found only at five sampling sites. Drillings in bivalves were over 10 times as frequent as in brachiopods, but the average drilling frequency was still low (5.6%) compared to typical boring frequencies of Cenozoic mollusks. Some common bivalve species, however, were drilled at frequencies up to 50 times higher than those observed for shells of B. rosea from the same samples. Due to scarcity of drilled brachiopods, it is not possible to evaluate if the driller displayed a nonrandom (stereotyped) site, size, or valve preference. Drilled brachiopods may record (1) naticid or muricid predation, (2) predation by other drillers, (3) parasitic drillings, and (4) mistaken or opportunistic attacks. Low drilling frequency in brachiopods is consistent with recent reports on ancient and modern examples. The scarcity of drilling in brachiopods, coupled with much higher drilling frequencies observed in sympatric bivalves, suggests that drilling in brachiopods may have been due to facultative or erroneous attacks. The drilling frequencies observed here for the brachiopod-bivalve assemblages are remarkably similar to those reported for Permian brachiopod-bivalves associations. This report adds to the growing evidence for an intriguing macroecological stasis: multiple meta-analytical surveys of present-day and fossil rhynchonelliform brachiopods conducted in recent years also point to persistent scarcity and low intensity of biotic interactions between brachiopods and drilling organisms throughout their evolutionary history.
Resumo:
The effects of time averaging on the fossil record of soft-substrate marine faunas have been investigated in great detail, but the temporal resolution of epibiont assemblages has been inferred only from limited-duration deployment experiments. Individually dated shells provide insight into the temporal resolution of epibiont assemblages and the taphonomic history of their hosts over decades to centuries. Epibiont abundance and richness were evaluated for 86 dated valves of the rhynchonelliform brachiopod Bouchardia rosea collected from the inner shelf. Maximum abundance occurred on shells less than 400 yr old, and maximum diversity was attained within a century. Taphonomic evidence does not support models of live-host colonization, net accumulation, or erasure of epibionts over time. Encrustation appears to have occurred during a brief interval between host death and burial, with no evidence of significant recolonization of exhumed shells. Epibiont assemblages of individually dated shells preserve ecological snapshots, despite host-shell time averaging, and may record long-term ecological changes or anthropogenic environmental changes. Unless the ages of individual shells are directly estimated, however, pooling shells of different ages artificially reduces the temporal resolution of their encrusting assemblages to that of their hosts, an artifact of analytical time averaging. © 2006 by The University of Chicago. All rights reserved.
Resumo:
Shells of Bouchardia rosea (Brachiopoda, Rhynchonelliformea) are abundant in Late Holocene death assemblages of the Ubatuba Bight, Brazil, SW Atlantic. This genus is also known from multiple localities in the Cenozoic fossil record of South America. A total of 1211 valves of B. rosea, 2086 shells of sympatric bivalve mollusks (14 nearshore localities ranging in depth from 0 to 30 m), 80 shells of Bouchardia zitteli, San Julián Formation, Paleogene, Argentina, and 135 shells of Bouchardia transplatina, Camacho Formation, Neogene, Uruguay were examined for bioerosion traces. All examined bouchardiid shells represent shallow-water, subtropical marine settings. Out of 1211 brachiopod shells of B. rosea, 1201 represent dead individuals. A total of 149 dead specimens displayed polychaete traces (Caulostrepsis). Live polychaetes were found inside Caulostrepsis borings in 10 life-collected brachiopods, indicating a syn-vivo interaction (Caulostrepsis traces in dead shells of B. rosea were always empty). The long and coiled peristomial palps, large chaetae on both sides of the 5th segment, and flanged pygidium found in the polychaetes are characteristic of the polychaete genus Polydora (Spionidae). The fact that 100% of the Caulostrepsis found in living brachiopods were still inhabited by the trace-making spionids, whereas none was found in dead hosts, implies active biotic interaction between the two living organisms rather than colonization of dead brachiopod shells. The absence of blisters, the lack of valve/site stereotypy, and the fact that tubes open only externally are all suggestive of a commensal relationship. These data document a new host group (bouchardiid rhynchonelliform brachiopods) with which spionids can interact (interestingly, spionid-infested sympatric bivalves have not been found in the study area despite extensive sampling). The syn-vivo interaction indicates that substantial bioerosion may occur when the host is alive. Thus, the presence of such bioerosion traces on fossil shells need not imply a prolonged post-mortem exposure of shells on the sea floor. Also, none of the Paleogene and Neogene Bouchardia species included any ichnological evidence for spionid infestation. This indicates that the Spionidae/ Bouchardia association may be geologically young, although the lack of older records may also reflect limited sampling and/or taphonomic biases.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper deals with the Compositional Fidelity of the brachiopods assemblages, dominated by Bouchardia rosea, on the outer shelf and continental slope along São Paulo State. Samples were obtained during the Revizee-Score-Sul-Benthos program. The sampled stations are in sites as depth as 90 to 600 meters, along the outer continental shelf, the shelf break and the top of continental slope. The fidelity estimates were obtained directly from the comparisons between living biota and dead shells, from the same collecting stations. Data come from 66 sampling stations, and the vast majority of the Bouchardia rosea individuals collected (n=2393) were dead (n = 2342, 97.9%). Only 51 individuals were collected alive. When pooling the data from all collecting stations the dead/live frequency is of 2,1% only. The occurrences of Bouchardia rosea shells in siliciclastic bottoms are reduced and living individuals were not found on this type of bottom, at least during the sampling program. These results suggest low compositional fidelity (live-dead) or high compositional mismatch, pointing to a recent decrease in this specie population. The low compositional fidelity of the Bouchardia rosea assemblages in outer shelf sites may be due to changes in seawater temperature, nutrient availability and population history. All these issues must be investigated in the near future
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)