82 resultados para Classification of plants


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We give a complete classification of basis with unitari (U(A-1), U(3)) and permutational (S)A)) symmetries. Thse are suitable as functions for (p-f)- nuclei (41<= A <= 80) with minimal configuration energy. We also give a brief survey of way in which are obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents two approaches of Artificial Immune System for Pattern Recognition (CLONALG and Parallel AIRS2) to classify automatically the well drilling operation stages. The classification is carried out through the analysis of some mud-logging parameters. In order to validate the performance of AIS techniques, the results were compared with others classification methods: neural network, support vector machine and lazy learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pipe flow of a viscous-oil-gas-water mixture such as that involved in heavy oil production is a rather complex thereto-fluid dynamical problem. Considering the complexity of three-phase flow, it is of fundamental importance the introduction of a flow pattern classification tool to obtain useful information about the flow structure. Flow patterns are important because they indicate the degree of mixing during flow and the spatial distribution of phases. In particular, the pressure drop and temperature evolution along the pipe is highly dependent on the spatial configuration of the phases. In this work we investigate the three-phase water-assisted flow patterns, i.e. those configurations where water is injected in order to reduce friction caused by the viscous oil. Phase flow rates and pressure drop data from previous laboratory experiments in a horizontal pipe are used for flow pattern identification by means of the 'support vector machine' technique (SVM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Essential oils were obtained from roots of 10 Aristolochia species by hydrodistillation and analysed by GC MS. A total of 75 compounds were identified in the analysed oils. Multivariate analyses of the chemical constituents of the roots enabled classification of the species into four morphological groups. These forms of analysis represent an aid in identification of further specimens belonging to these species. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zones of mixing between shallow groundwaters of different composition were unravelled by two-way regionalized classification, a technique based on correspondence analysis (CA), cluster analysis (ClA) and discriminant analysis (DA), aided by gridding, map-overlay and contouring tools. The shallow groundwaters are from a granitoid plutonite in the Funda o region (central Portugal). Correspondence analysis detected three natural clusters in the working dataset: 1, weathering; 2, domestic effluents; 3, fertilizers. Cluster analysis set an alternative distribution of the samples by the three clusters. Group memberships obtained by correspondence analysis and by cluster analysis were optimized by discriminant analysis, gridded memberships as follows: codes 1, 2 or 3 were used when classification by correspondence analysis and cluster analysis produced the same results; code 0 when the grid node was first assigned to cluster 1 and then to cluster 2 or vice versa (mixing between weathering and effluents); code 4 in the other cases (mixing between agriculture and the other influences). Code-3 areas were systematically surrounded by code-4 areas, an observation attributed to hydrodynamic dispersion. Accordingly, the extent of code-4 areas in two orthogonal directions was assumed proportional to the longitudinal and transverse dispersivities of local soils. The results (0.7-16.8 and 0.4-4.3 m, respectively) are acceptable at the macroscopic scale. The ratios between longitudinal and transverse dispersivities (1.2-11.1) are also in agreement with results obtained by other studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the petroleum well drilling operation many mechanical and hydraulic parameters are monitored by an instrumentation system installed in the rig called a mud-logging system. These sensors, distributed in the rig, monitor different operation parameters such as weight on the hook and drillstring rotation. These measurements are known as mud-logging records and allow the online following of all the drilling process with well monitoring purposes. However, in most of the cases, these data are stored without taking advantage of all their potential. On the other hand, to make use of the mud-logging data, an analysis and interpretationt is required. That is not an easy task because of the large volume of information involved. This paper presents a Support Vector Machine (SVM) used to automatically classify the drilling operation stages through the analysis of some mud-logging parameters. In order to validate the results of SVM technique, it was compared to a classification elaborated by a Petroleum Engineering expert. © 2006 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Classification and standardization of the sawn wood is a usual activity, developed by countries that come as great consumers of this material. Brazil does not practice the classification of sawn wood. This work had the main objective of evaluating the sensibility of most common non-destructive tests in the classification of dimension lumber from fast grown Eucalyptus plantation. Wood was obtained from genetic material cultivated at Minas Gerais State, Brazil. 296 beams of structural dimensions (6 cm × 12 cm × 280 cm) from 10 different clones of Eucalyptus were sampled. Beams were non-destructively (stress wave, ultrasound and transverse vibration) and destructively (static bending and compression parallel to grain) tested. Non-destructive results showed sensibility in the classification of structural dimension lumber, being possible to establish wave velocity intervals that attend to the main strength classes reported by Wooden Structures Brazilian Code.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the tasks in genome annotation can be at least partially automated. Since this annotation is time-consuming, facilitating some parts of the process - thus freeing the specialist to carry out more valuable tasks - has been the motivation of many tools and annotation environments. In particular, annotation of protein function can benefit from knowledge about enzymatic processes. The use of sequence homology alone is not a good approach to derive this knowledge when there are only a few homologues of the sequence to be annotated. The alternative is to use motifs. This paper uses a symbolic machine learning approach to derive rules for the classification of enzymes according to the Enzyme Commission (EC). Our results show that, for the top class, the average global classification error is 3.13%. Our technique also produces a set of rules relating structural to functional information, which is important to understand the protein tridimensional structure and determine its biological function. © 2009 Springer Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an investigation of the hybrid PSO/ACO algorithm to classify automatically the well drilling operation stages. The method feasibility is demonstrated by its application to real mud-logging dataset. The results are compared with bio-inspired methods, and rule induction and decision tree algorithms for data mining. © 2009 Springer Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A total of 24 extracts from 14 plant species collected at the state of Minas Gerais, Brazil, and belonging to five botanical families (Annonaceae, Apocynaceae, Ochnaceae, Polygonaceae and Vitaceae) was screened for cytotoxicity in cultured Vero cells and for antiviral activity against human herpes virus type 1 (HSV-1), vaccinia virus (VACV) and murine encephalomyocarditis virus (EMCV). The highest cytotoxicity (CC 50 < 10 μg/mL) was observed for the ethanol extracts from Annona coriacea fruits and seeds. Extracts from Hancornia speciosa, Ouratea castaneafolia and O. semisrrata were the only ones that have shown activity against all the three viruses assayed. Extracts from Polygonum spectabile, Hancornia speciosa, Himatanthus phagedaenica, Ouratea spectabilis and O. semiserrata were the most active against HSV-1 (EC 50 < 50 mg/mL), with favorable SI values (8.0 to 10.0). Hancornia speciosa and Anaxagorea dolichocarpa were the most active against EMCV (EC 50 50 - 100 μg/mL), with reasonable SI values (5.2 to 6.1), while moderate to low activity (EC 50 > 100 μg/mL) was observed for Ouratea spectabilis and O. semiserrata. A total of 7 plant species, Ouratea semiserrata, O. spectabilis, O. castanaeafolia, Rollinia laurifolia, Cissus erosa, Polygonum spectabile, and Hancornia speciosa, were active against VACV, disclosing EC50 < 50 μg/mL and SI values ranging from 6.6 to 67.3. In total, 10 out of the 14 species were selected from a literature survey on plants used to treat viral diseases in Brazil; these species were responsible for 70% of the positive results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spermatogenesis is crucial to the species reproduction, and its monitoring may shed light over some important information of such process. Thus, the germ cells quantification can provide useful tools to improve the reproduction cycle. In this paper, we present the first work that address this problem in fishes with machine learning techniques. We show here how to obtain high recognition accuracies in order to identify fish germ cells with several state-of-the-art supervised pattern recognition techniques. © 2011 IEEE.