141 resultados para Cimento portland
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Pós-graduação em Engenharia Civil e Ambiental - FEB
Resumo:
The need to reduce environmental damage and add value to waste causes more and more new alternatives appear to unite these two points. One of the main ways to achieve this in timber industries and the use of waste for making panels. This work was aimed at studying the influence of particle size and density in Eucalyptus mechanical compressive strength of cement composite wood. For this study was performed production and physico-mechanical characterization of specimens, using portland cement, water and waste eucalyptus. The methodology consists of a statistical study of the results obtained by calculating the density and axial compression tests and a subsequent comparison of these results with other studies. The results showed that there are significant differences in density and compressive strength when using different particle sizes the particles of eucalyptus. In general, the smaller the particle size, the lower the compression strength and the greater the density when the samples are produced with the same trait
Resumo:
The search for a more aware use of available raw materials has led to a need to create more sustainable products. The use of natural fibers to reinforce cement, for instance, has been widely studied in the past decades because of the possibility that they can improve material properties such as thermal resistance and to compression, besides conferring a decrease in their total weight. This present study aimed at to conduct preliminary studies on the thermal resistance of the composite cement - Cellulose Pulp, using waste from the pulp and paper industry. Through experiments, it was found that the composite manufactured using the ratio 30 % Portland cement and 70 % pulp, showed satisfactory results regarding its thermal resistance, so it could be considered as a potential thermal insulation material, for use in constructions
Resumo:
The aim of this study was to evaluate the compressive strength and setting time of MTA and Portland cement (PC) associated with bismuth oxide (BO), zirconium oxide (ZO), calcium tungstate (CT), and strontium carbonate (SC). Methods. For the compressive strength test, specimens were evaluated in an EMIC DL 2000 apparatus at 0.5 mm/min speed. For evaluation of setting time, each material was analyzed using Gilmore-type needles. The statistical analysis was performed with ANOVA and the Tukey tests, at 5% significance. Results. After 24 hours, the highest values were found for PC and PC + ZO. At 21 days, PC + BO showed the lowest compressive strength among all the groups. The initial setting time was greater for PC. The final setting time was greater for PC and PC + CT, and MTA had the lowest among the evaluated materials (< 0.05). Conclusion. The results showed that all radiopacifying agents tested may potentially be used in association with PC to replace BO.
Resumo:
The aim of this study was to evaluate the antimicrobial activity and pH changes induced by Portland cement (PC) alone and in association with radiopacifiers. Methods. The materials tested were pure PC, PC + bismuth oxide, PC + zirconium oxide, PC + calcium tungstate, and zinc oxide and eugenol cement (ZOE). Antimicrobial activity was evaluated by agar diffusion test using the following strains: Micrococcus luteus, Streptococcus mutans, Enterococcus faecalis, Pseudomonas aeruginosa, and Candida albicans. After 24 hours of incubation at 37°C, inhibition of bacterial growth was observed and measured. For pH analysis, material samples (n=10) were placed in polyethylene tubes and immersed in 10 mL of distilled water. After 12, 24, 48, and 72 hours, the pH of the solutions was determined using a pH meter. Results. All microbial species were inhibited by the cements evaluated. All materials composed of PC with radiopacifying agents promoted pH increase similar to pure Portland cement. ZOE had the lowest pH values throughout all experimental periods. Conclusions. All Portland cement-based materials with the addition of different radiopacifiers (bismuth oxide, calcium tungstate, and zirconium oxide) presented antimicrobial activity and pH similar to pure Portland cement.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
Pós-graduação em Odontologia - FOAR