20 resultados para Charge sharing effect


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the antimicrobial effect of antimicrobial photodynamic therapy (aPDT) in alveolar treatment of areas with induced periodontitis. Thirty male Wistar rats were subjected to ligature-induced periodontal disease (PD) in the first left inferior molars, while the right side molars did not receive ligatures. After 7 days of PD evolution, ligatures were removed from the left side, and the first left and right mandibular molars were extracted. Afterwards, animals were divided into groups according to the following treatments: control (C)-no treatment; mechanical debridement (MD)-mechanical debridement and irrigation with saline solution; and aPDT-mechanical debridement, irrigation with toluidine blue O (TBO), and 1 min of laser irradiation (GaAlAs, 660 nm, 30 mW, 32 J/cm2, 60 s). Ligatures were removed and samples of the alveolar content after extraction and after each treatment were collected for microbial processing by real-time polymerase chain reaction with specific primers for Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Treponema denticola. Data were submitted to statistical analysis by multiple comparison tests (McNemar test; p < 0.05). T. denticola was not found in the collected samples. A. actinomycetemcomitans and P. gingivalis were found in ligature samples. Tooth socket samples without periodontitis induction presented lesser microbial charge than samples with induced periodontitis (p < 0.05). aPDT significantly reduced A. actinomycetemcomitans levels on the left side (p < 0.05). It was concluded that aPDT was an effective antimicrobial treatment for tooth sockets in areas affected by induced periodontitis. © 2013 Springer-Verlag London.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eumelanin pigments show hydration-dependent conductivity, broad-band UV-vis absorption, and chelation of metal ions. Solution-processing of synthetic eumelanins opens new possibilities for the characterization of eumelanin in thin film form and its integration into bioelectronic devices. We investigate the effect of different synthesis routes and processing solvents on the growth, the morphology, and the chemical composition of eumelanin thin films using atomic force microscopy and X-ray photoelectron spectroscopy. We further characterize the films by transient electrical current measurements obtained at 50% to 90% relative humidity, relevant for bioelectronic applications. We show that the use of dimethyl sulfoxide is preferable over ammonia solution as processing solvent, yielding homogeneous films with surface roughnesses below 0.5 nm and a chemical composition in agreement with the eumelanin molecular structure. These eumelanin films grow in a quasi layer-by-layer mode, each layer being composed of nanoaggregates, 1-2 nm high, 10-30 nm large. The transient electrical measurements using a planar two-electrode device suggest that there are two contributions to the current, electronic and ionic, the latter being increasingly dominant at higher hydration, and point to the importance of time-dependent electrical characterization of eumelanin films. This journal is © 2013 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Processo FAPESP: 2012/24545-3