84 resultados para Ceramic material


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The expansion and maintenance of electricity distribution networks generates large amounts of waste, much of it in the form of discarded insulators that are not reused or recycled. This paper describes the results of tests on used and new ceramic and polymeric insulators to verify if their exposure to weathering justifies their replacement. In new and used ceramic insulators, properties such as contact angle, relative density, porosimetry, dilatometry and X-ray diffraction patterns showed no differences or the differences that were found could not be related to their use. The discarded ceramic material showed high thermal stability, an interesting characteristic for application as chamotte. It can also be reused to replace gravel used in substations. In polymeric insulators, thermogravimetry, differential scanning calorimetry and relative density test results suggest degradation of used material compared to new. This would justify their replacement and discard as waste, but they show little recycling potential.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents a proposal to create a Polo Ceramic Craft in the town of Indiana - SP, through the potter’s organization in a cooperative that will coordinate activities to add value to ceramic pieces. To achieve this, two things are essential: improving the ceramic body and improve the properties of the ceramic material. For the first action it’s necessary to create a Central Mass Production of Ceramics, to provide raw materials and homogeneous composition that results in differentiated ceramic after burning process (sintering). To this end, we propose the incorporation of additives (which act as fluxes) to the clay material. These additives can be mineral such as feldspar and nefelinas or leavings, such as glass powder obtained from disposable containers. For the second action is necessary to acquire an oven, electric or gas, it reaches higher temperatures (around 1200 ° C). The presence of the additive and burning at higher temperatures will enable better production of sintered ceramic material with less porosity and water absorption and higher mechanical strength, and pieces vitrified and glazed, allowing them to assign a higher value. For the production of these materials (thinner walls) requires a smaller volume of clayey raw materials. Besides benefiting the ceramic pieces, the proposed changes reduce the environmental impact caused by burning wood, since it will be replaced by natural gas (or electricity), and even will reduce the disposal of glass containers in the environment by recycling and incorporating this material in the clay. From a social standpoint, the cooperative is crucial to the viability of the proposed project, to coordinate activities and commercial production, which will result in better wages and profits for companies and consequently for the city and its population

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of ceramic materials is constantly evolving, especially in research related to advanced ceramics. Once these have many applications, this paper relates to synthesis by solid state reaction of calcium copper titanate (CCTO) ceramic material means doping with strontium. The powders were characterized using thermal analysis techniques such as TG (thermogravimetry), DTA (differencial thermal analysis), dilatometry, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The compositions have submitted weight loss at around 6% with respect to carbonates used, and was attributed a temperature of 950° C to perform the calcination according to thermogravimetric analysis. After the process of calcination and milling, the particles presented approximately spherical shapes and high percentages of substitution Ca2+ with Sr2+ was evident by the presence of necks between to particles due to the milling calcination. Analyses with Energy Dispersive Spectroscopy (EDS) showed stoichiometries in different samples very similar to the theoretical stoichiometry

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Polymeric Precursor Method has proved suitable for synthesizing reactive powders using low temperatures of calcination, especially when compared with conventional methods. However, during the thermal decomposition of the polymeric precursor the combustion event can be releases an additional heat that raises the temperature of the sample in several tens of degrees Celsius above the set temperature of the oven. This event may be detrimental to some material types, such as the titanium dioxide semiconductor. This ceramic material has a phase transition at around 600 ° C, which involves the irreversible structural rearrangement, characterized by the phase transition from anatase to rutile TiO2 phase. The control of the calcination step then becomes very important because the efficiency of the photocatalyst is dependent on the amount of anatase phase in the material. Furthermore, use of dopant in the material aims to improve various properties, such as increasing the absorption of radiation and in the time of the excited state, shifting of the absorption edge to the visible region, and increasing of the thermal stability of anatase. In this work, samples of titanium dioxide were synthesized by the Polymeric Precursor Method in order to investigate the effect of Fe (III) doping on the calcination stages. Thermal analysis has demonstrated that the Fe (III) insertion at 1 mol% anticipates the organic decomposition, reducing the combustion event in the final calcination. Furthermore, FTIR-PAS, XRD and SEM results showed that organic matter amount was reduced in the Fe (III)-doped TiO2 sample, which reduced the rutile phase amount and increased the reactivity and crystallinity of the powder samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although ceramics present high compressive strength, they are brittle materials due to their low tensile strength so they have lower capacity to absorb shocks. This study evaluated the fracture toughness of different ceramic systems, which refers to the ability of a friable material to absorb defformation energy. Three ceramic systems were investigated. Ten cylindrical samples (5,0mm x 3,0mm), were obtained from each ceramic material as follows: G1- 10 samples of Vitadur Alpha (Vita-Zahnfabrik); G2- 10 samples of IPS Empress2 (Ivoclar-Vivadent); G3- 10 samples of In-Ceram Alumina (Vita-Zahnfabrik). Fracture toughness values were collected upon indentation tests that were performed under a heavy load. A microhardness tester (Digital Microhardness Tester FM) utilized a 500gf load cell during 10seconds to perform four impressions on each sample. Statistically significant results were observed (ANOVA and Kruskal-Wallis tests). In-Ceram Alumina presented the highest median toughness values (2,96N/m3/2), followed by Vitadur Alpha (2,08N/m3/2) and IPS Empress2 (1,05N/m3/2). It may be concluded that different ceramic systems present distinct fracture toughness values, thus In-Ceram is capable of absorbing superior stress when compared to Vitadur Alpha and IPS Empress2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work is part of several research related to the plan of design and construction of a sustainable house. The previous researches focused on sustainable materials and it have shown that ceramic material are more interesting to improve the thermal comfort and the reduction of fees and prices of the house, making possible to construct popular home, mainly clay bricks, that have high thermal inertia and low costs, besides the fact that it is easy to find the raw materials in nature and process them. However, a major issue in using clay bricks is that it uses too many energy to be processed during the sintering (burning), a crucial part of the process that assures mechanical resistance. Alternative materials are being proposed by the researchers, as the clay bricks without the sintering mixed with Portland cement, assuring the proper resistance to the brick. Raw materials of cement, however, also need to be thermally processed in rotary kilns, in a process called clinckerization. This research was proposed for comparing the energy used by the two types of bricks and other objectives, in order to determinate which one uses less thermal energy. The intention was to compare the energy used during the sintering of regular clay bricks and the unfired bricks with 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of Portland cement. The paper also investigated and compared the use of electrical and thermal energy of all the bricks to identify how important were the thermal stages (sintering or clinkerization) relatively to the total energy spent. At last, a resumed analysis was performed to identify the possible health damages of the many life cycles of the bricks. The conclusion was that unfired bricks with less than 40% of cement use less thermal energy to be processed. In addition, their carbon dioxides emissions were less dangerous to ... (Complete abastract click electronic access below)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Data on stress distribution in tooth-restoration interface with different ceramic restorative materials are limited. The aim of this chapter was to assess the stress distribution in the interface of ceramic restorations with laminate veneer or full-coverage crown with two different materials (lithium dissilicate and densely sintered aluminum oxide) under different loading areas through finite element analysis. Materials and Methods: Six two-dimensional finite element models were fabricated with different restorations on natural tooth: laminate veneer (IPS Empress, IPS Empress Esthetic and Procera AllCeram) or full-coverage crown (IPS e.max Press and Procera AllCeram). Two different loading areas (L) (50N) were also determined: palatal surface at 45° in relation to the long axis of tooth (L1) and perpendicular to the incisal edge (L2). A model with higid natural tooth was used as control. von Mises equivalent stress (σ vM) and maximum principal stress (σ max) were obtained on Ansys software. Results: The presence of ceramic restoration increased σ vM and σ max in the adhesive interface, mainly for the aluminum oxide (Procera AllCeram system) restorations. The full-coverage crowns generated higher stress in the adhesive interface under L1 while the same result was observed for the laminate veneers under L2. Conclusions: Lithium dissilicate and densely sintered aluminum oxide restorations exhibit different behavior due to different mechanical properties and loading conditions. © 2011 Nova Science Publishers, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, with increase amounts of sludge derived from the treatment of domestic sewage put pressure into research on systems for the adequate use of these materials. The aim of the present work is to study the use of sludge ash, from sintering and calcinated process, as a raw material for the ceramic industry. Using the sewage sludge ashes as ceramic raw material there will be no contamination of soil and underground water. Metals and toxic compounds like Al, Fe, Ba, Cr, Cu, Mn and Zn oxides were analyzed and characterized by X-ray fluorescence (XRF), scanning electron microscopy (SEM) and plasma emission spectroscopy (ICP-OES). The leached material was chemically analyzed where the integration of oxides into the ceramic matrix of sludge ash was observed. Residual decomposition was analyzed by TG, DTG and DTA curves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An archeological artifact can be seen as a chronological element, which helps to determine the age of certain society and to understand the thinking, values and the way of life of this society. Thus, the classification of archeological artifacts is one of the approaches used to study the cultural system of antique societies trying to reconstruct their history. The "Centro de Museologia, Antropologia e Argueologia (CEMAARQ)" of the "Unesp Univ Estadual Paulista" in Presidente Prudente, São Paulo state, Brazil, develops projects within this context (identification and preservation). This is the case of the archeological site named "Lagoa São Paulo-02" discovered in 1993 at the margins of the Parana river in the region of Presidente Epitacio city, São Paulo state, Brazil. This site has ceramic fragments of different shapes and sizes that have a strong influence of traces of the Guarani culture, which is one of the Brazilian native populations. These samples were basically characterized via micro-Raman scattering and Fourier transform infrared absorption (FTIR) spectroscopies. The main objective was to identify the pigments used in the manufacture of the ceramic artifacts and to analyze the composition of the ceramic body to understand how the artifacts were made. Three pigments were found: red, black and white. For the red pigment were identified characteristic bands of hematite, an iron oxide found in the red rocks of the river banks that were eroded by water. The black pigment, probably, is due to the use of vegetal charcoal, which is found in nature as the product of burning organic material such as wood. For the white pigment, the FTIR spectra suggested the use of kaolin, either in the ceramic body or in the proper white pigment, due to the presence of the characteristic bands of the kaolinite. Complementary, the additives applied as anti-plastics were identified as charcoal and quartz, being the latter found in the rocks present in the archeological site. (C) 2010 Elsevier B.V. All rights reserved.