18 resultados para Cellulose fiber


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results: OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform-near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions: OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level. © 2013 Chandel et al; licensee BioMed Central Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial cellulose (BC) has become established as a remarkably versatile biomaterial and can be used in a wide variety of applied scientific applications, especially for medical devices. In this work, the bacterial cellulose fermentation process is modified by the addition of hyaluronic acid and gelatin (1% w/w) to the culture medium before the bacteria is inoculated. Hyaluronic acid and gelatin influence in bacterial cellulose was analyzed using Transmission Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Adhesion and viability studies with human dental pulp stem cells using natural bacterial cellulose/hyaluronic acid as scaffolds for regenerative medicine are presented for the first time in this work. MTT viability assays show higher cell adhesion in bacterial cellulose/gelatin and bacterial cellulose/ hyaluronic acid scaffolds over time with differences due to fiber agglomeration in bacterial cellulose/gelatin. Confocal microscopy images showed that the cell were adhered and well distributed within the fibers in both types of scaffolds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An extracellular pectin lyase secreted by Fusarium decemcellulare MTCC 2079 under solid state fermentation condition has been purified to electrophoretic homogeniety by using ammonium sulfate fractionation, carboxymethyl cellulose and gel filtration (Sephadex G-100) column chromatographies. The purified enzyme showed single protein band corresponding to molecular mass 45 +/- 01 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme had maximum activity at pH 9.0 and showed maximum stability in the pH range of 9.0-12.0. The optimum temperature of the purified enzyme was 50 degrees C and it showed maximum stability upto 40 degrees C. The energy of activation for the thermal denaturation (Ea) was 59.06 kJ mol(-1) K-1. The K-m and k(cat) values using citrus pectin as the substrate were 0.125mgml(-1) and 72.9 s(-1) in 100mM sodium carbonate buffer pH 9.0 at 50 degrees C. The biophysical studies on pectin lyase showed that its secondary structure belongs to alpha+beta class of protein with comparatively less of beta-sheets. Purified pectin lyase showed efficient retting of Crotolaria juncea fibers.