18 resultados para COLLAGEN STRUCTURE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Several cements are used as biomaterials. Biopolymers such as chitosan and collagen exhibit excellent biocompatibility and can be used in the remodeling of bone tissue. The cement must have high mechanical strength and compatibility with original tissue. In this context, the objective of this study was to extract, characterize and cross-link collagen from bovine tendon, forlater associate it with chitosan and calcium phosphate to obtain cements for bone regeneration. Glutaraldehyde was used as cross-linker in 0.1, 0.5, 1.0 and 10% concentration. Infrared analysis confirmed the presence of functional groups characteristic of collagen, whereas the capacity of water absorption decreased with the increasing of cross-linking degree. Denaturation temperatures of collagen samples were obtained by Differential Scanning Calorimetry and Scanning Electron Microscopy showed the fiber structure characteristics of collagen, which were more organized for high degree of cross-linking samples.
Resumo:
The aim of this study was to evaluate the putative influence of diabetes without metabolic control in the loss of tooth structure as well as histological changes in dentin and pulp tissue in rats. Diabetes was induced in Wistar rats (n=25) by intravenous administration of alloxan (42mg/kg). Diabetic and non-diabetic control rats were evaluated at 1, 3, 6, 9 and 12 months of follow-up. In order to evaluate the presence and progression of dental caries and periapical lesions, hemimandibles were removed and submitted to radiographical, histological, and morphometrical procedures. Dental caries were detected after radiographical and histological evaluations in diabetic group from the third month of diabetes onset, increasing gradually in frequency and severity in periods. Diabetic rats dental pulps also presented significant reduction in volume density of collagen fibers and fibroblasts at third month, parallel with a trend towards the increase in inflammatory cells volume density. Diabetic rats presented a generalized pulp tissue necrosis after 6 months of diabetes induction. Moreover, periapical lesions were not detected in control group, while these lesions were observed in all rats after 3, 6, 9, and 12 months of diabetes induction. Uncontrolled diabetes seems to trigger the loss of tooth structure, associated to histological dental changes and mediates its evolution to progressive severe pulp and periapical lesions in rats. Therefore, diabetes may be considered a very important risk factor regarding alterations in dental pulp, development of dental caries, and periapical lesions.