36 resultados para CBN


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grinding is a precision machining process which is widely used in the manufacture of components requiring fine tolerances and smooth surfaces. There are several imput parameters (cutting conditions, cutting fluid and grinding wheel type used, dressing conditions etc.) which can affect the process variables (tangential and normal cutting forces, roughness, grinding temperatures, G ratio, etc.) leading to differences in the roughness, in the surface integrity and in the mechanical strength of the ground component. Consequently, the imput parameters must be controlled in order to insure the workpiece final quality. This paper presents a comparative evaluation of the performance of two types of grinding wheels [a conventional (Al2O3) and a superabrasive (CBN)] when grinding a VC131 steel, by the analysis of specific process variables when varying the cutting conditions. Highest values of G ratio and lowest workpiece roughness was observed when using CBN grinding wheels. This confirms the global trend of replacement of alumina grinding wheels by CBN, when grinding DTG (difficult to grind) materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report herein on a comparison of the performance of two different grinding wheels (conventional and CBN) in the transverse cylindrical grinding of a eutectic alloy. Three cutting conditions were tested: rough, semi-finishing and finishing. The parameters of evaluation were the cutting force, roughness and wheel wear. The optimal cutting force and roughness values were obtained when grinding with the conventional wheel, due to the superior dressing operation performed under every cutting condition tested. Although the CBN wheel presented the best G ratio values, they were lower than expected owing to the inappropriate dressing operation applied. Excessive wheel corner wear was detected in both wheels, caused by the grinding kinematics (transverse grinding) employed. In terms of cutting force and roughness, the conventional wheel proved to be the better choice under the conditions tested. However, in terms of the G ratio, a cost analysis is crucial to determine whether the differences between the wheels justify the use of the CBN wheel, in which case the dressing operation requires improvement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the high industrial competitiveness, the rigorous laws of environmental protection, the necessary reduction of costs, the mechanical industry sees itself forced to worry more and more with the refinement of your processes and products. In this context, can be mentioned the need to eliminate the roundness errors that appear after the grinding process. This work has the objective of verifying if optimized nozzles for the application of cutting fluid in the grinding process can minimize the formation of the roundness errors and the diametrical wear of grinding wheel in the machining of the steel VC 131 with 60 HRc, when compared to the conventional nozzles. These nozzles were analyzed using two types of grinding wheels and two different cutting fluids. Was verified that the nozzle of 3mm of diameter, integral oil and the CBN grinding wheel, were the best options to obtain smaller roundness errors and the lowest diametrical wears of grinding wheels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behavior of the minimum quantity lubricant (MQL) technique was analyzed under different lubricating and cooling conditions when grinding ABNT 4340 steel. The comparative analysis of the residual stress values showed that residual compressive stresses were obtained under all the lubrication/cooling conditions and types of abrasive tools employed. The highest residual compressive stress obtained with the aluminum oxide grinding wheel with MQL under the condition of V= 30m/s for air and V= 40ml/h for lubricant was -376MPa against the -160MPa attained with conventional cooling, representing a 135% increase in residual compressive stress. The results show that method and quantity of lubricant and cooling are factors that influence the grinding process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grinding - the final machining process of a workpiece - requires large amounts of cutting fluids for the lubrication, cooling and removal of chips. These fluids are highly aggressive to the environment. With the technological advances of recent years, the worldwide trend is to produce increasingly sophisticated components with very strict geometric and dimensional tolerances, good surface finish, at low costs, and particularly without damaging the environment. The latter requirement can be achieved by recycling cutting fluids, which is a costly solution, or by drastically reducing the amount of cutting fluids employed in the grinding process. This alternative was investigated here by varying the plunge velocity in the plunge cylindrical grinding of ABNT D6 steel, rationalizing the application of two cutting fluids and using a superabrasive CBN (cubic boron nitride) grinding wheel with vitrified binder to evaluate the output parameters of tangential cutting force, acoustic emission, roughness, roundness, tool wear, residual stress and surface integrity, using scanning electron microscopy (SEM) to examine the test specimens. The performance of the cutting fluid, grinding wheel and plunge velocity were analyzed to identify the best machining conditions which allowed for a reduction of the cutting fluid volume, reducing the machining time without impairing the geometric and dimensional parameters, and the surface finish and integrity of the machined components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of minimum lubrication, optimized and conventional cooling at different flows and application rates of cutting fluids on the quality of hardened-steel pieces produced by external cylindrical plunge grinding with super-abrasive grinding wheels with low CBN concentrations was verified. The analysis of the quality of the pieces was performed through the assessment of the behavior of the specific energy of the grinding, roughness, roundness deviation, and the generated residual stress. By analyzing of the application ways and of the several flows and application rates of the cutting fluid, one could encounter lubrication/cooling conditions that enable the reduction in cutting fluid volume, reduction in grinding time without compromising the dimensional parameters (superficial finishing, surface integrity). Regarding the different applications of cutting fluids, it could be noted the optimized application for higher velocities has presented the best performance, demonstrating the effectiveness of the new concept of nozzle utilized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study analyzes the particularities of Brazilian radio networks that adopt the all-news format and briefly presents the main national and international experiences for the implementation of the model and its conceptualization. Besides the bibliographic review, we use the multiple-case study, analyzing as the empirical objects CBN and BandNews FM networks. Also, we apply methodological procedures of systematic non-participant observation, supplemented by interviews and surveys. We conclude that the different all-news programming models and network organizations influence the processes of production, information structure, broadcasting language, and therefore the stations' profile. © 2011 Copyright Taylor and Francis Group, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEB

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)