46 resultados para Bivalves
Resumo:
The deposits of the Permian Teresina Formation are mainly characterized by fi ne-grained siliciclastic rocks and centimetric intercalations of tempestites (bioclastic sandstones and coquinas). Despite the relevance of the bivalve-rich carbonate beds of the Teresina Formation to paleoenvironmental studies, their taphonomy is still poorly studied. The fossil concentration studied in this work was found in a quarry in the city of Irati, Rio Preto district, Parana State. The fossil concentration is located in the middle/upper portion of the unit, far from the top. The studied bed is a bioclastic, intraclastic, peloidal, grainstone/ packstone, with abundant bivalve shell fragments, pelitic and micritic intraclasts, peloids, rare ooids and oncoids, as well as permineralized of Lycophyta microphylles and fish scales. The grains of this carbonate concentration show: high degree of time-averaging, variable degree of packing (dense to disperse), no sorting and chaotic orientation. Notably, the concentration includes a mixture of elements which are indicative of: a) restrictive, low energy, carbonate environment (peloids, ooids and oncoids); b) subaerial environment surrounding the main body of water (Lycophyta microphylles) and c) quiet-water environment punctuated by storm events, where the suspension-feeding bivalves thrived. At least four depositional events caused by storm fl ows were recorded. The amalgamated nature of the bed is a result of storm events in an intracratonic basin with very low seafl oor slope and low rates of sedimentation and subsidence.
Resumo:
Herein, it is presented the first detailed taphonomic study on bivalve mollusk shells preserved in the oolitic limestones of the Teresina Formation (probably Kungurian-Roadian, Lower-Middle Permian) in the eastern margin of the Parana basin. The selected beds are located in two quarries (informally named PRU 1 and PRU 2) in Prudentopolis municipality (Center-South Parana State), and positioned approximately in the middle of the formation and probably in the Pinzonella illusa Zone. The PRU 1 limestone ([approximately]30 cm thick), which is partially silicified and intercalated with predominantly pelitic rocks, is classified as a bivalve oolitic grainstone. The basal contact is erosive and the top shows symmetrical ripple marks, which are draped by shale with mud cracks. There are two fining-upwards successions characterized by dense to dispersed packing of the shells, which are usually disarticulated, randomly oriented (many nested/stacked) and mixed with some Formapelitic intraclasts. Microhummocky cross-stratification occurs a little below the top of the bed. The PRU2 bed is classified as ooidbivalve rudstone[approximately] (~5 cm thick), where all shells are disarticulated and fragmented, showing dense packing. The bivalves probably inhabited a muddy substrate and were mixed (as parautochtonous and allochthonous bioclasts) with ooids during high-energy storm events, including posterior shell displacement as a result of bioturbation. Thus, the calcareous beds represent amalgamated proximal tempestites with a complex taphonomic history, strong temporal/spatial mixing of bioclasts and limited paleoecological resolution. They are a typical example of shell beds generated in a huge epeiric sea, which was not necessarily connected to the ocean and where very low depositional-slope gradient, very slow subsidence and minimum sediment accommodation space caused frequent sediment reworking by storm related processes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bivalve filter feeders are sessile animals that live in constant contact with water and its pollutants. Their gill is an organ highly exposed to these conditions due to its large surface and its involvement in gas exchanges and feeding. The bivalve Mytella falcata is found in estuaries of Latin America, on the Atlantic as well as the Pacific Coast. It is commonly consumed, and sometimes is the only source of protein of low-income communities. In this study, gill filaments of M. falcata were characterized using histology, histochemistry and transmission electron microscopy for future comparative studies among animals exposed to environmental pollutants. Gill filaments may be divided into abfrontal, intermediate and frontal zones. Filaments are interconnected by ciliary discs. In the center of filaments, haemocytes circulate through a haemolymph vessel internally lined by an endothelium and supported by an acellular connective tissue rich in polysaccharides and collagen. The abfrontal zone contains cuboidal cells, while the intermediate zone consists of a simple squamous epithelium. The frontal zone is composed of five columnar cell types: one absorptive, mainly characterized by the presence of pinocytic vesicles in the apical region of the cell; one secretory, rarely observed and three ciliated with abundant mitochondria. All cells lining the filament exhibit numerous microvilli and seem to absorb substances from the environment. PAS staining was observed in mucous cells in the frontal and abfrontal zones. Bromophenol blue allowed the distinction of haemocytes and detection of a glycoprotein secretion in the secretory cells of the frontal region. The characteristics of M. falcata gill filaments observed in this study were very similar to those of other bivalves, especially other Mytilidae, and are suitable for histopathological studies on the effect of water-soluble pollutants. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Tempestitos grossos constituem camadas delgadas de conglomerado gradando a arenito, com estratificação cruzada seguida de laminação ondulada truncante a simétrica e de drape/flaser de siltito/folhelho. Cinco exemplos extraídos do Permiano da bacia do Paraná ilustram esse tipo de depósito: três deles são de rochas siliciclásticas, contendo bioclastos de bivalves e vertebrados (Formação Rio Bonito-Membro Triunfo e Formação Palermo), enquanto os outros dois são de rochas carbonática e fosfática (respectivamente, formações Teresina e Corumbataí do Grupo Passa Dois). O componente tracional da base do tempestito grosso apresenta-se como arenite quartzoso/lítico ou grainstone oolítico com cimento calcífero preenchendo poros (casos das formações Palermo e Teresina). em sua maioria, os tempestitos grossos constituem pavimentos transgressivos intercalados em folhelhos ou tempestitos finos (arenitos muito finos a folhelhos com estratificação ondulada truncante-hummocky). em outro caso, extraído de subsuperfície, o pavimento transgressivo ocorre na base de uma sucessão progradante de barra de plataforma. O tempestito grosso da Formação Teresina constitui um evento transgressivo sobreposto a depósitos de barra de plataforma.
Resumo:
The encrustation of Paleozoic rhynchonelliform brachiopods has been studied for decades, but modern brachiopods have not received similar scrutiny. The discovery of abundant subtropical brachiopods from the Southeast Brazilian Bight provides an unprecedented opportunity to assess epibiont abundance, diversity, and encrustation patterns in modern brachiopod assemblages. Across the outer shelf, encrustation frequencies vary among taxa, from mean values of 0.45% for Platidia to 9.3% for Argyrotheca. Encrustation frequencies for Bouchardia increase from 1.6% on the outer shelf to 84% on the inner shelf Larger valves are encrusted more frequently, and epibionts preferentially colonize valve interiors. Increased encrustation on the inner shelf may reflect the greater surface area of larger hosts, longer exposure of dead shells, water-mass characteristics, sedimentation rates, productivity, or other factors that vary with depth. Inner-shelf brachiopods exhibit encrustation frequencies comparable to those reported for epifaunal bivalves. The epibiont fauna is dominated by bryozoans and serpulids, with minor roles played by spirorbids, bivalves, barnacles, foraminifera, algae, and other taxa. Epibiont abundance at each site is highly variable, but sites are similar in rank importance of epibiont taxa. A different suite of epibionts colonized Paleozoic brachiopods, but similar patterns of encrustation have been observed, including preferential settlement according to valve morphology. These results provide a baseline for evaluating the encrustation of modern bivalves and ancient brachiopods, and may elucidate the macroevolutionary history of epibionts and their relationship to their hosts.
Resumo:
Over 14,000 specimens-5,204 brachiopods, 9,137 bivalves, and 178 gastropods-acquired from 30 collecting stations (0 to 45 m depth) in the Ubatuba and Picinguaba bays, southern Brazil, were compared for drilling frequencies. Beveled (countersunk) circular-to-subcircular borings (Oichnus-like drill holes) were found in diverse bivalves but also in the rhynchonelliform brachiopod Bouchardia rosea-a small, semi-infaunal to epifaunal, free-lying species that dominates the brachiopod fauna of the southern Brazilian shelf. Drill holes in bivalve mollusks and brachiopods are comparable in their morphology, average diameter, and diameter range, indicating attacks by a single type of drilling organism. Drill holes in brachiopods were rare (0.4%) and found only at five sampling sites. Drillings in bivalves were over 10 times as frequent as in brachiopods, but the average drilling frequency was still low (5.6%) compared to typical boring frequencies of Cenozoic mollusks. Some common bivalve species, however, were drilled at frequencies up to 50 times higher than those observed for shells of B. rosea from the same samples. Due to scarcity of drilled brachiopods, it is not possible to evaluate if the driller displayed a nonrandom (stereotyped) site, size, or valve preference. Drilled brachiopods may record (1) naticid or muricid predation, (2) predation by other drillers, (3) parasitic drillings, and (4) mistaken or opportunistic attacks. Low drilling frequency in brachiopods is consistent with recent reports on ancient and modern examples. The scarcity of drilling in brachiopods, coupled with much higher drilling frequencies observed in sympatric bivalves, suggests that drilling in brachiopods may have been due to facultative or erroneous attacks. The drilling frequencies observed here for the brachiopod-bivalve assemblages are remarkably similar to those reported for Permian brachiopod-bivalves associations. This report adds to the growing evidence for an intriguing macroecological stasis: multiple meta-analytical surveys of present-day and fossil rhynchonelliform brachiopods conducted in recent years also point to persistent scarcity and low intensity of biotic interactions between brachiopods and drilling organisms throughout their evolutionary history.
Resumo:
Rhynchonelliform brachiopods were diverse and often dominant benthos of tropical seas in the Paleozoic. In contrast, they are believed to be rare in open habitats of modern oceans, especially at low latitudes. This study documents numerous occurrences of rhynchonelliform brachiopods on a modern tropical shelf, particularly in areas influenced by upwelling. Extensive sampling of the outer shelf and coastal bays of the Southeast Brazilian Bight revealed dense populations of terebratulid brachiopods (>10(3) individuals /m(2) of seafloor) between 24 and 26 S. on the outer shelf, brachiopods are more abundant than bivalves and gastropods combined. However, brachiopod diversity is low: only four species belonging to the genera Bouchardia, Terebratulina, Argyrotheca, and Platidia were identified among over 16000 examined specimens. Brachiopods occur preferentially on carbonate bottoms and include two substrate-related associations: Bouchardia (40-70% CaCO3, weight content) and Terebratulina-Argyrotheca (70-95% CaCO3). All four species display a broad bathymetric range that contrasts with a narrow depth tolerance postulated for many Paleozoic rhynchonelliforms. The most abundant populations occur in the depth range between 100 and 200 m, and coincide with zones of shelf-break upwelling, where relatively colder and nutrient-rich water masses of the South Atlantic Central Water are brought upward by cyclonic meanders of the South Brazil Current (a western boundary current that flows poleward along the coast of Brazil). This is consistent with previous biological and paleontological studies that suggest upwelling may play a role in sustaining brachiopod-dominated benthic associations. The presence of abundant brachiopods in the open habitats of the tropical shelf of the western South Atlantic contrasts with current understanding of their latitudinal distribution and points to major gaps in our knowledge of their present-day biogeography. The ecological importance of rhynchonelliform brachiopods in modern oceans and their role as producers of biogenic sedimentary particles may be underestimated.
Resumo:
Eight taxa of marine invertebrates, including two new bivalve species, are described from the Low Head Member of the Polonez Cove Formation (latest early Oligocene) cropping out in the Vaureal Peak area, King George Island, West Antarctica. The fossil assemblage includes representatives of Brachiopoda (genera Neothyris sp. and Liothyrella sp.), Bivalvia (Adamussium auristriatum sp. nov., ?Adamussium cf. A. alanbeui Jonkers, and Limatula (Antarctolima) ferraziana sp. nov.), Bryozoa, Polychaeta (serpulid tubes) and Echinodermata. Specimens occur in debris flows deposits of the Low Head Member, as part of a fan delta setting in a high energy, shallow marine environment. Liothyrella sp., Adamussium auristriatum sp. nov. and Limatula ferraziana sp. nov. are among the oldest records for these genera in King George Island. In spite of their restrict number and diversification, bivalves and brachiopods from this study display an overall dispersal pattern that roughly fits in the clockwise circulation of marine currents around Antarctica accomplished in two steps. The first followed the opening of the Tasmanian Gateway at the Eocene/Oligocene boundary, along the eastern margin of Antarctica, and the second took place in post-Palaeogene time, following the Drake Passage opening between Antarctic Peninsula and South America, along the western margin of Antarctica.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Taphonomic analysis of pelecypod concentration in the part of the Teresina Formation (Passa Dois Group), Tiaraju region, State of Rio Grande do Sul, indicates its origins as due to high energy events (storms). The fauna include shallow-burrowing suspensivorous species, associated with this byssate semi-infauna species. Several taphonomic characteristics indicate that the fossiliferous assemblage was subject to little selective processes during transportation. These are: predominance of disarticulated valves (although articulated valves are frequent) and perpendicular, oblique, concordant and nested arrangement of bioclasts in the sedimentary matrix. Absence of fragmentation, bioerosion and incrustation of the bioclasts, suggest fast burial of shells due to high sedimentation rate events. Diagenetic features, indicate that the fossils were later submitted to refossilization and mixing with other non-coeval bioclasts, resulting in some degree of time-averaging.
Resumo:
Shells of Bouchardia rosea (Brachiopoda, Rhynchonelliformea) are abundant in Late Holocene death assemblages of the Ubatuba Bight, Brazil, SW Atlantic. This genus is also known from multiple localities in the Cenozoic fossil record of South America. A total of 1211 valves of B. rosea, 2086 shells of sympatric bivalve mollusks (14 nearshore localities ranging in depth from 0 to 30 m), 80 shells of Bouchardia zitteli, San Julián Formation, Paleogene, Argentina, and 135 shells of Bouchardia transplatina, Camacho Formation, Neogene, Uruguay were examined for bioerosion traces. All examined bouchardiid shells represent shallow-water, subtropical marine settings. Out of 1211 brachiopod shells of B. rosea, 1201 represent dead individuals. A total of 149 dead specimens displayed polychaete traces (Caulostrepsis). Live polychaetes were found inside Caulostrepsis borings in 10 life-collected brachiopods, indicating a syn-vivo interaction (Caulostrepsis traces in dead shells of B. rosea were always empty). The long and coiled peristomial palps, large chaetae on both sides of the 5th segment, and flanged pygidium found in the polychaetes are characteristic of the polychaete genus Polydora (Spionidae). The fact that 100% of the Caulostrepsis found in living brachiopods were still inhabited by the trace-making spionids, whereas none was found in dead hosts, implies active biotic interaction between the two living organisms rather than colonization of dead brachiopod shells. The absence of blisters, the lack of valve/site stereotypy, and the fact that tubes open only externally are all suggestive of a commensal relationship. These data document a new host group (bouchardiid rhynchonelliform brachiopods) with which spionids can interact (interestingly, spionid-infested sympatric bivalves have not been found in the study area despite extensive sampling). The syn-vivo interaction indicates that substantial bioerosion may occur when the host is alive. Thus, the presence of such bioerosion traces on fossil shells need not imply a prolonged post-mortem exposure of shells on the sea floor. Also, none of the Paleogene and Neogene Bouchardia species included any ichnological evidence for spionid infestation. This indicates that the Spionidae/ Bouchardia association may be geologically young, although the lack of older records may also reflect limited sampling and/or taphonomic biases.
Resumo:
During a recent inspection in the Paleontological Collection of the Institute of Geosciences, University of São Paulo, we have identifi ed some specimens of undescribed mollusk bivalves. These called our attention for the following reasons: a) all specimens are internal molds of conjugated and closed articulated valves, some of them presenting fragments of silicifi ed shells; b) all internal molds have similar general shape and internal characters, representing specimens of the same taxon; c) the internal molds and silicifi ed valves are well preserved, including fragile structures, which are hardly preserved, such as the internal mold of the external ligament and muscle scars; d) and equally important, according to the labels of all specimens, they were collected from rocks of the Passa Dois Group (Permian), Serrinha Member of the Rio do Rasto Formation. Although who collected the shells and the precise geographic location of the specimens are still unknown, the detailed study of these fossils brings us to the conclusion that they are morphologically distinct from any heretofore published genus of the endemic fauna of bivalves from Passa Dois Group. Based in its general shape, hinge structure and muscles scars, the new form can be classifi ed under the Family Megadesmidae Vokes, 1967, the most diverse group of Permian bivalves of the Paraná Basin. The specimens are referred as Beurlenella elongatella new gen. and sp. The shell shape and taphonomy indicate that this bivalve was a shallow, rapid, active burrower, suspension feeder, probably preserved in situ, in event deposits.
Resumo:
The microbiological responses of two bivalves species from Tagus estuary, Venerupis pullastra (native clam) and Ruditapes philippinarum (exotic clam) were investigated during 48h of depuration and subsequent simulated transport in semi-dry conditions at two temperatures (4 and 22°C) until reaching 50% lethal time (LT50). Regardless of temperature and species, the maintenance of clams in water for 48h (depuration period) did not affect LT50 during transport. R.philippinarum showed higher survival rates than V.pullastra, always reaching LT50 later, especially at 4°C. Significant differences between clams' species were found in almost all microbiological parameters. This can be related with clams' biological activity and habitat environmental conditions since both clams do not coexist in Tagus estuary. Depuration was efficient to reduce the bacterial load, particularly Escherichia coli, but not efficient to remove Vibrio spp. In both species, the growth of Vibrio spp. was inhibited at 4°C, whereas exponential growth occurred at 22°C. Total viable counts significantly increased in most treatments, while E.coli counts significantly decreased to undetected levels, except for non-depurated R.philippinarum simulated transported at 4°C. Thus, this study highlights the importance of clams depuration for at least 24h in polluted estuarine areas, followed by transport at low temperatures (4°C). © 2013 Elsevier Ltd.