82 resultados para Behavior Driven Development
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this study, we characterized the gerbil's ventral prostate histology ultrastructurally and quantitatively throughout three phases of postnatal development (young, adult, and old) in order to comprehend its biological behavior and propensity to developing spontaneous lesions with aging. The gerbil prostate is composed of alveoli and ducts immersed in a stroma composed of smooth muscle, fibroblasts, collagen and elastic fibers and vessels. The prostate tissue components present morphological and quantitative aspects that vary according to age. Young animals have an immature gland with modest secretory activity. Synthetic activity remained stable in adult and old gerbil. However, prostatic morphology was altered in the aging, showing an increased epithelium and stromal fibrosis. The nuclei of the secretory cells increased with aging, whereas nucleoli presented few alterations during postnatal development. The epithelial proliferation and stromal remodeling noted in this study indicate that the gerbil prostate may respond to the androgen declines typical of senescence through epithelial proliferation and stromal remodeling.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The leaf-cutting ants forage a wide variety of plant species, used for symbiotic fungus cultivation. To better understand this tripartite complex interaction, 24 colonies of Acromyrmex subterraneus brunneus were conditioned for 4 months to 6 different plants (Citrus spp., Ligustrum spp., Acalypha spp., Eucalyptus spp., Alchornea triplinervia, Melia spp.), to verify the influence of conditioning on foraging behavior of workers. The effect of plants on symbiotic fungus development was studied separately, through macerated plants in Agar and culture medium A as the control. During foraging, workers presented polyphagic foraging behavior, refusing the plants to which they were conditioned. The selection of plants is not correlated with the plant substrate that promotes good development of symbiotic fungus. Such results demonstrate the importance of plant diversity for fungus garden maintenance.
Resumo:
SMART material systems offer great possibilities in terms of providing novel and economical solutions to engineering problems. The technological advantages of these materials over traditional ones are due to their unique microstructure and molecular properties. Smart materials such as shape memory alloys (SMA), has been used in such diverse areas of engineering science, nowadays. In this paper, we present a numerical investigation of the dynamics interaction of a nonideal structure (NIS). We analyze the phenomenon of the passage through resonance region in the steady state processes. We remarked that this kind of problem can lead to the so-called Sommerfeld effect: steady state frequencies of the DC motor will usually increase as more power (voltage) is given to it in a step-by-step fashion. When a resonance condition with the structure it is reached, the better part of this energy it is consumed to generate large amplitude vibrations of the foundation without sensible change of the motor frequency as before. The results obtained by using numerical simulations are discussed in details. Copyright © 2009 by ASME.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The intensification of the production system in the poultry industry and the vertical integration of the poultry agribusiness have brought profound changes in the physical and social environment of domestic fowls in comparison to their ancestors and have modified the expression of aggression and submission. The present review has covered the studies focusing on the different aspects linked to aggressiveness in the genus Gallus. The evaluated studies have shown that aggressiveness and subordination are complex behavioral expressions that involve genetic differences between breeds, strains and individuals, and differences in the cerebral development during growth, in the hormonal metabolism, in the rearing conditions of individuals, including feed restriction, density, housing type (litter or cage), influence of the opposite sex during the growth period, existence of hostile stimuli (pain and frustration), ability to recognize individuals and social learning. The utilization of fighting birds as experimental material in the study of mechanisms that have influence on the manifestation of aggressiveness in the genus Gallus might comparatively help to elucidate important biological aspects of such behavior.
Resumo:
We conducted a longitudinal study about daily variation of Wistar male rats' behavior in the elevated plus-maze (EPM) evaluated in the 1st, 2nd, 3rd, 6th, 12th, and 18th months of life. Animals were submitted to the plus-maze in 12 sessions at 2-h intervals (n=72, 6 per time point). Spontaneous rest-activity rhythm of four animals was assessed by observation of 24-h videotape records. Time series were analyzed by Cosinor method. Behavioral rates on the six occasions and in light and dark phases were compared by means of two-way ANOVA with repeated measures. Exploratory behavior in EPM was smaller in the light phase and in older animals. Higher values of open and closed arms exploration were observed in the first and third months of the dark phase, and in the first month of the light phase. Adjustment to the 24-h period was significant at all stages for rest-activity data, number of entries in closed arms, and time on center, and for three to five stages for open-arm exploration. In general, 24 h variability was more pronounced in younger animals compared with older ones. The present study showed that: (1) a significant amount of total variability of the behavioral indexes analyzed could be attributed to 24 h variation, (2) light/dark phases differences in EPM exploration were present at all developmental stages, (3) older Wistar rats explored less the EPM and were less active in their home cage compared with younger ones, and (4) behavioral indexes (EPM) decrease was phase related and partially related to a reorganization of rest-activity rhythm. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
An amperometric oxygen sensor based on a polymeric nickel-salen (salen = N,N'-ethylene bis(salicylideneiminato)) film coated platinum electrode was developed. The sensor was constructed by electropolymerization of nickel-salen complex at platinum electrode in acetonitrile/tetrabutylammonium perchlorate by cyclic voltammetry. The voltammetric behavior of the sensor was investigated in 0.5 mol L-1 KCl solution in the absence and presence of molecular oxygen. Thus, with the addition of oxygen to the solution, the increase of cathodic peak current (at -0.25 V vs. saturated calomel electrode (SCE)) of the modified electrode was observed. This result shows that the nickel-salen film on electrode surface promotes the reduction of oxygen. The reaction can be brought about electrochemically, where the nickel(II) complex is first reduced to a nickel(I) complex at the electrode surface. The nickel(I) complex then undergoes a catalytic oxidation by the molecular oxygen in solution back to the nickel(II) complex, which can then be electrochemically re-reduced to produce an enhancement of the cathodic current. The Tafel plot analyses have been used to elucidate the kinetics and mechanism of the oxygen reduction. A plot of the cathodic current vs. the dissolved oxygen concentration for chronoamperometry (fixed potential = -0.25 V vs. SCE) at the sensor was linear in the 3.95-9.20 mg L-1 concentration range and the concentration limit was 0.17 mg L-1 O-2. The proposed electrode is useful for the quality control and routine analysis of dissolved oxygen in commercial samples and environmental water. The results obtained for the levels of dissolved oxygen are in agreement with the results obtained with a commercial O-2 sensor. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
An amperometric oxygen sensor based on a polymeric nickel-salen (salen = N,N '-ethylenebis(salicydeneiminato)) film coated platinum electrode was developed. The sensor was constructed by electropolymerization of nickel-salen complex at a platinum electrode in acetonitrile/tetrabuthylamonium perchlorate by cyclic voltammetry. The voltammetric behavior of the modified electrode was investigated in 0.5 mol L-1 KCl solution in the absence and presende of molecular oxygen. A significant increased of cathodic peak current (at -0.20 vs. SCE) of the modified electrode with addition of oxygen to the solution was observed. This result shows that the nickel-salen film on the surface of the electrode promotes the reduction of oxygen. The reaction can be brought about electrochemically where in the nickel(II) complex is first reduced to a nickel(I) complex at the electrode surface. The nickel(I) complex then undergoes a catalytic oxidation by the oxygen molecular in solution back to the nickel(II) complex, which can then be electrochemically re-reduced to produce an enhancement of the cathodic current. The plot of the cathodic current versus the dissolved oxygen concentration for chronoamperometry (potential fixed = -0.20 V) at the sensor was linear in the concentration range of 3.95 to 9.20 mg L-1 with concentration limit of 0.17 mg L-1 O-2. The modified electrode proposed is useful for the quality control and routine analysis of dissolved oxygen in commercial water and environmental water samples. The results obtained for the levels of dissolved oxygen are in agreement with the results obtained with an O-2 commercial sensor. (C) 2011 Published by Elsevier Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper describes the development and solution of binary integer formulations for production scheduling problems in market-driven foundries. This industrial sector is comprised of small and mid-sized companies with little or no automation, working with diversified production, involving several different metal alloy specifications in small tailor-made product lots. The characteristics and constraints involved in a typical production environment at these industries challenge the formulation of mathematical programming models that can be computationally solved when considering real applications. However, despite the interest on the part of these industries in counting on effective methods for production scheduling, there are few studies available on the subject. The computational tests prove the robustness and feasibility of proposed models in situations analogous to those found in production scheduling at the analyzed industrial sector. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Fiber reinforced epoxy composites are used in a wide variety of applications in the aerospace field. These materials have high specific moduli, high specific strength and their properties can be tailored to application requirements. In order to screening optimum materials behavior, the effects of external environments on the mechanical properties during usage must be clearly understood. The environmental action, such as high moisture concentration, high temperatures, corrosive fluids or ultraviolet radiation (UV), can affect the performance of advanced composites during service. These factors can limit the applications of composites by deteriorating the mechanical properties over a period of time. Properties determination is attributed to the chemical and/or physical damages caused in the polymer matrix, loss of adhesion of fiber/resin interface, and/or reduction of fiber strength and stiffness. The dynamic elastic properties are important characteristics of glass fiber reinforced composites (GRFC). They control the damping behavior of composite structures and are also an ideal tool for monitoring the development of GFRC's mechanical properties during their processing or service. One of the most used tests is the vibration damping. In this work, the measurement consisted of recording the vibration decay of a rectangular plate excited by a controlled mechanism to identify the elastic and damping properties of the material under test. The frequency amplitude were measured by accelerometers and calculated by using a digital method. The present studies have been performed to explore relations between the dynamic mechanical properties, damping test and the influence of high moisture concentration of glass fiber reinforced composites (plain weave). The results show that the E' decreased with the increase in the exposed time for glass fiber/epoxy composites specimens exposed at 80 degrees C and 90% RH. The E' values found were: 26.7, 26.7, 25.4, 24.7 and 24.7 GPa for 0, 15, 30, 45 and 60 days of exposure, respectively. (c) 2005 Springer Science + Business Media, Inc.
Resumo:
The continuous use of structural polymer composites in aeronautical industry has required the development of repairing techniques of damages found in different types of laminates. The most usually adopted procedure to investigate the repair of composite laminates has been by repairing damages simulated in laminated composite specimens. This work shows the influence of structural repair technique on mechanical properties of a typical carbon fiber/epoxy laminate used in aerospace industry. When analyzed by tensile test, the laminates with and without repair present tensile strength values of 670 and 892 MPa, respectively, and tensile modulus of 53.0 and 67.2 GPa, respectively. By this result, it is possible to observe a decrease of the measured mechanical properties of the repaired composites. When submitted to fatigue test, it is observed that in loads higher than 250 MPa, this laminate presents a low life cycle (lower than 400,000 cycles). The fatigue performance of both laminates is comparable, but the non-repaired laminate presented higher tensile and fatigue resistance when compared with the repaired laminate.
Resumo:
Fatigue, corrosion and wear resistance are important parameters in aircraft components development as landing gear. High strength/weight ratio and effective corrosion resistance make of titanium alloys an alternative choice to replace steel and aluminum alloys. However, titanium alloys have poor tribological properties, which reduce devices performance under friction. PVD coatings tribological systems has been increased due to their attractive mechanical properties as low environmental impact, low friction coefficient, low wear rate and hardness up to 2000 HV.In this study the influence of TiN deposited by PVD on the fatigue strength of Ti-6Al-4V alloy was evaluated. Comparison of fatigue strength of coated specimens and base material shows also a decrease when parts are coated. It was observed that the influence is more significant in high cycle fatigue tests. Scanning electron microscopy technique (SEM) was used to observe crack origin sites and fracture features. (C) 2010 Published by Elsevier Ltd.