49 resultados para Bayesian econometrics
Resumo:
Knowledge of genetic parameters is essential for improved reproductive management and increased yield. Quantitative analysis of genetic parameters is lacking for many breeds of buffaloes. This article provides the first estimate of genetic parameters for dual purpose (meat and milk) Brazilian Jaffarabadi buffaloes, using Bayesian inference. Data on milk yield (MY), lactation length (LL), weight at 205 days (W205) and 365 (W365) days of age, and average daily gain (ADG) from 205 to 365 days of age were collected in two herds. Bivariate analyses (using the program MTGSAM) were performed with the Gibbs sampler to obtain estimates of variance and covariance. Average lactation milk yield and lactation length were 1 620.2 +/- 450.9 kg and 257.6 +/- 46.8 days, respectively, and the mean values for weight traits (kg) were 181.6 +/- 63.3 (W205), 298.04 +/- 116.1 (W365), and 0.73 +/- 0.35 (ADG). Heritability estimates (modes) were 0.16 for MY, 0.10 for LL, 0.43 for W205, 0.48 for W365 and 0.32 for ADG. There was a high genetic correlation (0.96) between milk yield and lactation length and very high genetic correlations (0.99) between the three growth traits. Our data suggest that both milk production and growth traits have clear potential for yield improvement through direct selection in this dual purpose breed. The selection for weight at an early age would be successful and selection for MY can be performed in the first lactation.
Resumo:
We propose alternative approaches to analyze residuals in binary regression models based on random effect components. Our preferred model does not depend upon any tuning parameter, being completely automatic. Although the focus is mainly on accommodation of outliers, the proposed methodology is also able to detect them. Our approach consists of evaluating the posterior distribution of random effects included in the linear predictor. The evaluation of the posterior distributions of interest involves cumbersome integration, which is easily dealt with through stochastic simulation methods. We also discuss different specifications of prior distributions for the random effects. The potential of these strategies is compared in a real data set. The main finding is that the inclusion of extra variability accommodates the outliers, improving the adjustment of the model substantially, besides correctly indicating the possible outliers.
Resumo:
The generalized exponential distribution, proposed by Gupta and Kundu (1999), is a good alternative to standard lifetime distributions as exponential, Weibull or gamma. Several authors have considered the problem of Bayesian estimation of the parameters of generalized exponential distribution, assuming independent gamma priors and other informative priors. In this paper, we consider a Bayesian analysis of the generalized exponential distribution by assuming the conventional non-informative prior distributions, as Jeffreys and reference prior, to estimate the parameters. These priors are compared with independent gamma priors for both parameters. The comparison is carried out by examining the frequentist coverage probabilities of Bayesian credible intervals. We shown that maximal data information prior implies in an improper posterior distribution for the parameters of a generalized exponential distribution. It is also shown that the choice of a parameter of interest is very important for the reference prior. The different choices lead to different reference priors in this case. Numerical inference is illustrated for the parameters by considering data set of different sizes and using MCMC (Markov Chain Monte Carlo) methods.
Resumo:
P>In this study, Bayesian analysis under a threshold animal model was used to estimate genetic correlations between morphological traits (body structure, finishing precocity and muscling) in Nelore cattle evaluated at weaning and yearling. Visual scores obtained from 7651 Nelore cattle at weaning and from 4155 animals at yearling, belonging to the Brazilian Nelore Program, were used. Genetic parameters for the morphological traits were estimated by two-trait Bayesian analysis under a threshold animal model. The genetic correlations between the morphological traits evaluated at two ages of the animal (weaning and yearling) were positive and high for body structure (0.91), finishing precocity (0.96) and muscling (0.94). These results indicate that the traits are mainly determined by the same set of genes of additive action and that direct selection at weaning will also result in genetic progress for the same traits at yearling. Thus, selection of the best genotypes during only one phase of life of the animal is suggested. However, genetic differences between morphological traits were better detected during the growth phase to yearling. Direct selection for body structure, finishing precocity and muscling at only one age, preferentially at yearling, is recommended as genetic differences between traits can be detected at this age.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study proposes to ascertain the importance of each alimentary category in the Tetrapturus albidus diet composition, as well as to propose the use of the Bayesian approach for analysis of these data. The stomachs were collected during fishing cruises carried out by the Santos-SP longliner from July 2007 to June 2008. For Bayesian model formulation, each alimentary item was clustered in four food categories as: teleost, cephalopod, crustaceans, and others. To estimate the proportion of each food category, the multinomial model with Dirichlet conjugate prior distribution was used. After the stomach contents analysis, 133 food items were identified, which belonged to 9 taxa. The most important food category is constituted by cephalopod molluscs, followed by teleost fishes. The food category comprised of crustaceans presents a low contribution and in this case it could be considered to be an accidental food item. The Bayesian approach means a distinct view in relation to traditional methods, as it permits one to incorporate information obtained from the literature. It should be useful to analyse great top predators, which are usually caught in small numbers.
Resumo:
In the context of Bayesian statistical analysis, elicitation is the process of formulating a prior density f(.) about one or more uncertain quantities to represent a person's knowledge and beliefs. Several different methods of eliciting prior distributions for one unknown parameter have been proposed. However, there are relatively few methods for specifying a multivariate prior distribution and most are just applicable to specific classes of problems and/or based on restrictive conditions, such as independence of variables. Besides, many of these procedures require the elicitation of variances and correlations, and sometimes elicitation of hyperparameters which are difficult for experts to specify in practice. Garthwaite et al. (2005) discuss the different methods proposed in the literature and the difficulties of eliciting multivariate prior distributions. We describe a flexible method of eliciting multivariate prior distributions applicable to a wide class of practical problems. Our approach does not assume a parametric form for the unknown prior density f(.), instead we use nonparametric Bayesian inference, modelling f(.) by a Gaussian process prior distribution. The expert is then asked to specify certain summaries of his/her distribution, such as the mean, mode, marginal quantiles and a small number of joint probabilities. The analyst receives that information, treating it as a data set D with which to update his/her prior beliefs to obtain the posterior distribution for f(.). Theoretical properties of joint and marginal priors are derived and numerical illustrations to demonstrate our approach are given. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A methodology to define favorable areas in petroleum and mineral exploration is applied, which consists in weighting the exploratory variables, in order to characterize their importance as exploration guides. The exploration data are spatially integrated in the selected area to establish the association between variables and deposits, and the relationships among distribution, topology, and indicator pattern of all variables. Two methods of statistical analysis were compared. The first one is the Weights of Evidence Modeling, a conditional probability approach (Agterberg, 1989a), and the second one is the Principal Components Analysis (Pan, 1993). In the conditional method, the favorability estimation is based on the probability of deposit and variable joint occurrence, with the weights being defined as natural logarithms of likelihood ratios. In the multivariate analysis, the cells which contain deposits are selected as control cells and the weights are determined by eigendecomposition, being represented by the coefficients of the eigenvector related to the system's largest eigenvalue. The two techniques of weighting and complementary procedures were tested on two case studies: 1. Recôncavo Basin, Northeast Brazil (for Petroleum) and 2. Itaiacoca Formation of Ribeira Belt, Southeast Brazil (for Pb-Zn Mississippi Valley Type deposits). The applied methodology proved to be easy to use and of great assistance to predict the favorability in large areas, particularly in the initial phase of exploration programs. © 1998 International Association for Mathematical Geology.
Resumo:
The advent of molecular markers has created opportunities for a better understanding of quantitative inheritance and for developing novel strategies for genetic improvement of agricultural species, using information on quantitative trait loci (QTL). A QTL analysis relies on accurate genetic marker maps. At present, most statistical methods used for map construction ignore the fact that molecular data may be read with error. Often, however, there is ambiguity about some marker genotypes. A Bayesian MCMC approach for inferences about a genetic marker map when random miscoding of genotypes occurs is presented, and simulated and real data sets are analyzed. The results suggest that unless there is strong reason to believe that genotypes are ascertained without error, the proposed approach provides more reliable inference on the genetic map.
Resumo:
In this article we describe a feature extraction algorithm for pattern classification based on Bayesian Decision Boundaries and Pruning techniques. The proposed method is capable of optimizing MLP neural classifiers by retaining those neurons in the hidden layer that realy contribute to correct classification. Also in this article we proposed a method which defines a plausible number of neurons in the hidden layer based on the stem-and-leaf graphics of training samples. Experimental investigation reveals the efficiency of the proposed method. © 2002 IEEE.
Resumo:
Linear mixed effects models have been widely used in analysis of data where responses are clustered around some random effects, so it is not reasonable to assume independence between observations in the same cluster. In most biological applications, it is assumed that the distributions of the random effects and of the residuals are Gaussian. This makes inferences vulnerable to the presence of outliers. Here, linear mixed effects models with normal/independent residual distributions for robust inferences are described. Specific distributions examined include univariate and multivariate versions of the Student-t, the slash and the contaminated normal. A Bayesian framework is adopted and Markov chain Monte Carlo is used to carry out the posterior analysis. The procedures are illustrated using birth weight data on rats in a texicological experiment. Results from the Gaussian and robust models are contrasted, and it is shown how the implementation can be used for outlier detection. The thick-tailed distributions provide an appealing robust alternative to the Gaussian process in linear mixed models, and they are easily implemented using data augmentation and MCMC techniques.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)