28 resultados para Basalt Province


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Eastern Blue Ridge Province of the southern Appalachians contains, in part, remnants of an Ordovician accretionary wedge complex formed during subduction of an oceanic tract before mid-Ordovician accretion with Laurentia. The Eastern Blue Ridge Province consists of metapelite and amphibolite intruded by low-K plutons, high-temperature (T >750 °C) Ordovician eclogite, and other high-pressure metamafic and meta-ultramafic rocks. Felsic plutons in the Eastern Blue Ridge Province are important time markers for regional-scale tectonics, deformation, and metamorphism. Plutons were thought to be related to either Taconian (Ordovician) or Acadian (Devonian-Silurian) tectonothermal events. We dated five plutonic or metaplutonic rocks to constrain pluton crystallization ages better and thus the timing of tectonism. The Persimmon Creek gneiss yielded a protolith crystallization age of 455.7 ± 2.1 Ma, Chalk Mountain 377.7 ± 2.5 Ma, Mt. Airy 334 ± 3Ma, Stone Mountain 335.6 ± 1.0 Ma, and Rabun 335.1 ± 2.8 Ma. The latter four plutons were thought to be part of the Acadian Spruce Pine Suite, but instead our new ages indicate that Alleghanian (Carboniferous-Permian) plutonism is widespread and voluminous in the Eastern Blue Ridge Province. The Chattahoochee fault, which was considered an Acadian structure, cuts the Rabun pluton and thus must have been active during the Alleghanian orogeny. The new ages indicate that Persimmon Creek crystallized less than 3 m.y. after zircon crystallization in Eastern Blue Ridge eclogite and is nearly synchronous with nearby high-grade metamorphism and migmatization. The three phases of plutonism in the Eastern Blue Ridge Province correspond with established metamorphic ages for each of the three major orogenic pulses along the western flank of the southern Appalachians. © 2006 Geological Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The petrographic and geochemical characterization of flood basalts of Serra Geral Formation are here presented. The investigated areas are situated in four different regions of São Paulo state: Jaú, Ribeirão Preto, Franca and Fernandópolis. They represent almost the total area of outcrops of basalts in the São Paulo State. The petrographical data reveals that these rocks are constituted mainly by plagioclase (30-40%), pyroxenes, augite and pigeonita (20-30%) and magnetite (5-15%), and show a intergranular texture and its varieties intersertal, hialophitic and pilotaxitic. The geochemical data show a basic and tholeiitic affinity of the studied basalts, with high-Ti content (TiO2 > 1.8%), typical of the northern region of Paraná Basin. Three different magma-types were recognized: Paranapanema, Urubici and Pitanga. The first magma-type is concentrated in the Fernandópolis region, the second in the Franca region, and the Pitanga occurs in the Ribeirão Preto and Jaú regions. The distribution patterns of these magma-types and the detailed study of geochemical data showed that they are, probably, generated by a melting of a continental lithospheric mantle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The c. 600 Ma Brasiliano Borborema Province of NE Brazil comprises a complex collage of Precambrian crustal blocks cut by a series of continental-scale shear zones. The predominant basement rocks in the province are 2.1-2.0 Ga Transamazonian gneisses of both juvenile and reworked nature. U-Pb zircon and Sm-Nd whole-rock studies of tonalite-trondhjemite-granodiorite basement gneisses in the NW Ceará or Médio Coreaú domain in the northwestern part of the Borborema Province indicate that this represents a continental fragment formed by 2.35-2.30 Ga juvenile crust. This block has no apparent genetic affinity with any other basement gneisses in the Borborema Province, and it does not represent the tectonized margin of the c. 2.1-2.0 Ga São Luis Craton to the NW. The petrological and geochemical characteristics, as well as the Nd-isotopic signatures of these gneisses, are consistent with their genesis in an island arc setting. This finding documents a period of crustal growth during a period of the Earth's history which is known for its tectonic quiescence and paucity of crust formation. © Geological Society of London 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rio Branco Rapakivi Batholith is located on the southwestern portion of the Amazonian Craton in Mato Grosso and belongs to the Cachoeirinha Tectonic Domain, part of the Rio Negro-Juruena Geochronological Province, Central Brasil. The batholith is constituted by microgabbros to quartz microgabbros and microdiorites to quartz microdiorites, middle to fine-grained equigranular to porphyritic varieties form the Rio Branco Intrusive Basic Suite, showing a discontinuous distribution and located near the margins of the intrusion.Majorly constituted by porphyritic, granophyric and isotropic facies of Rio Branco Intrusive Acid Suit which is composed by older dark red rapakivi monzogranites to quartz monzonites and quartz sienites (1403±0.6 Ma) and the younger red rapakivi leuco-monzogranites (1382±49 Ma) and late equigranular to pegmatitic monzogranites. The magmatism is constituted by two distinct magmas related to the end of the collisional event of Cachoeirinha Orogeny, one with alkaline basalts generated in an intraplate environment and the other postorogenic to anorogenic with peraluminous to metaluminous compositions and define a high-K calc-alkaline to shoshonitic magmatism in transition among the I- and A-types. The contacts are marked by extensive mafic sills and dikes of alkaline basalts derived from intraplate environment of the Salto do Céu Intrusive Basic Suite (±808 Ma) associate to the Sunsás-Aguapei Orogenic Belt and metasedimentary rocks of the Aguapeí Grup.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Archean (3.45-2.70Ga) rocks of the São José do Campestre Massif (SJCM) in the Borborema Province (NE Brazil) make up a small area (~6000km2) and are composed of granitoids and metasupracrustal rocks that define a complex magmatic and deformational history. The massif provides the opportunity to study mantle- and crustal-derived magmas generated since the Palaeoarchean. The orthogneisses of the SJCM are composed of: (1) tonalite to granodiorite with diorite enclaves (Bom Jesus gneiss, 3412±8Ma; TDM Nd model ages from 4.1 to 3.5Ga and negative epsilon Nd values); (2) biotite and ferroan-diopside monzogranite (Presidente Juscelino complex, 3356±21Ma and 3251±44Ma; TDM model ages range from 4.1 to 3.4Ga and epsilon Nd values that are slightly positive to negative); (3) hornblende tonalite to granodiorite (Brejinho complex, 3333±77Ma and 3187±8Ma; dominantly positive epsilon Nd values and TDM ages from 3.6 to 3.2Ga); (4) biotite monzogranite (São Pedro do Potengi gneiss, 3120±22Ma; TDM =3.5Ga; negative epsilon Nd value); (5) ferroan-diopside-grossular anorthosite and metagabbro (Senador Elói de Souza complex, 3033±3Ma); and (6) quartz diorite to syenogranite (São José do Campestre complex; 2685±9Ma and 2655±4Ma; negative epsilon Nd values and TDM ages from 3.9 to 3.3Ga). The orthogneisses are subalkaline to faintly alkaline, magnesian to ferroan, M- and I-type granitoids that follow either the K-enrichment or the trondhjemite trends. Each group has a subset with REE characteristics similar to Archean TTG and another that is analogous to Phanerozoic granitoids. They have negative Ta-Nb and Ti anomalies and have trace element contents of granitoids from subduction zones. Geochemical and Nd isotope data suggest that subducted oceanic crust and a depleted and metasomatised mantle wedge both acted as the magma sources. We propose a convergent tectonic model in which hybridisation of the upper mantle occurs through interactions with adakitic or trondhjemitic melts and recycling of earlier crust. The results imply that both the subducted oceanic crust and the mantle wedge played major roles in continent formation throughout successive episodes of arc accretion in Palaeo- and Mesoarchean times. The Archean rocks of the SJCM shares some similarities with the Pilbara, Kaapvaal, West African, and São Francisco cratons. However, the most reliable comparisons with the SJCM are with the neighbouring basement of the Nigeria and Cameroon shields. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Geologia Regional - IGCE

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Geociências e Meio Ambiente - IGCE

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reference materials (RM) are required for quantitative analyses and their successful use is associated with the degree of homogeneity, and the traceability and confidence limits of the values established by characterisation. During the production of a RM, the chemical characterisation can only commence after it has been demonstrated that the material has the required level of homogeneity. Here we describe the preparation of BRP-1, a proposed geochemical reference material, and the results of the tests to evaluate its degree of homogeneity between and within bottles. BRP-1 is the first of two geochemical RM being produced by Brazilian institutions in collaboration with the United States Geological Survey (USGS) and the International Association of Geoanalysts (IAG). Two test portions of twenty bottles of BRP-1 were analysed by wavelength dispersive-XRF spectrometry and major, minor and eighteen trace elements were determined. The results show that for most of the investigated elements, the units of BRP-1 were homogeneous at conditions approximately three times more rigorous than those strived for by the test of sufficient homogeneity. Furthermore, the within bottle homogeneity of BRP-1 was evaluated using small beam (1 mm(2)) synchrotron radiation XRF spectrometry and, for comparison, the USGS reference materials BCR-2 and GSP-2 were also evaluated. From our data, it has been possible to assign representative minimum masses for some major constituents (1 mg) and for some trace elements (1-13 mg), except Zr in GSP-2, for which test portions of 74 mg are recommended.