83 resultados para BIOFUEL


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomass has gained prominence in the last few years as one of the most important renewable energy sources. In Brazil, a sugarcane ethanol program called ProAlcohol was designed to supply the liquid gasoline substitution and has been running for the last 30 yr. The federal government's establishment of ProAlcohol in 1975 created the grounds for the development of a sugarcane industry that currently is one of the most efficient systems for the conversion of photosynthate into different forms of energy. Improvement of industrial processes along with strong sugarcane breeding programs brought technologies that currently support a cropland of 7 million hectares of sugarcane with an average yield of 75 tons/ha. From the beginning of ProAlcohol to the present time, ethanol yield has grown from 2,500 to around 7,000 l/ha. New technologies for energy production from crushed sugarcane stalk are currently supplying 15% of the electricity needs of the country. Projections show that sugarcane could supply over 30% of Brazil's energy needs by 2020. In this review, we briefly describe some historic facts of the ethanol industry, the role of sugarcane breeding, and the prospects of sugarcane biotechnology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brazil, which has always been in the forefront of sugarcane production, also occupies a prominent position as the first country to produce and use biofuel in its automobile fleet. This fact is a consequence of the introduction of a program which has already turned 30 years, the Próalcool (National Alcohol Program). The oil crisis in the seventies encouraged the government to develop an alternative way to replace gasoline. Bioethanol was then born as fuel obtained from fermentation of sugarcane juice, molasses or both. In the eighties, 85% of the cars ran exclusively on alcohol. Ethanol production in that decade exceeded sugarcane production by the mills. The installed units reached in that period the capacity to produce 18 billion liters of bioethanol per season, a volume equivalent to 100 million barrels of gasoline. The fermentation process, which so far had been restricted to manufacturing sugarcane liquor (aguardente) or ethanol as a byproduct of sugarcane, takes over the spotlight in the entrepreneurial scene. As a result, processes comprising engineering concepts came up and most of the biological phenomena involved in fermentation were understood. The knowledge gathered and the units installed have granted Brazil the hold of production technology and use of a clean fuel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biodegradability of pure diesel and biodiesel and blends with different proportions of biodiesel (2% (commercial); 5% and 20%) was evaluated employing the respirometric method and the redox indicator 2,6-dichlorophenol indophenol (DCPIP) test. In the former, experiments simulating the contamination of natural environments (soil from a petrol station or water from a river) were carried out in Bartha biometer flasks (250 ml), and used to measure the microbial CO 2 production. With the DCPIP test, the capability of three inocula to biodegrade the blends was tested. Results show that although biodiesel is more easily and faster biodegraded than diesel oil, among the blends evaluated (2%, 5% and 20%), only the blend with higher concentration of biodiesel presented biodegradability significantly different from diesel and it was not verified an improvement on the biodegradation of the diesel by means of co-metabolism. © 2008 Academic Journals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate the dynamic performance of an agricultural tractor utilizing distilled biodiesel (50% ethylic + 50% methylic) as a function of the proportion of biodiesel and diesel of petroleum (0 and 100%, 5 and 95%, 15 and 85%, 25 and 75%, 50 and 50%, 75 and 25% and 100 and 0%), respectively. This research was done in the area of the Department of Rural Engineering of the Paulista State University (UNESP), Jaboticabal Campus, SP, located in the latitude 21° 14′ 28″ S and longitude 48° 17′12″ W. A tractor 4 x 2 FWA was used, with a 73.6 kW (100 HP) motor and a ballast tractor. The biodiesel used was produced from spent oil from food frying. The experimental design was entirely randomized, with 7 treatments and 5 repetitions, totaling 35 observations. The results showed that the biodiesel and diesel blend significantly influenced the hourly volumetric consumption, hourly mass consumption, fuel consumption per worked area and specific fuel consumption variables. When the tractor operated with 100% of biodiesel (B100) the specific fuel consumption increased 18% on average in relation to diesel (B0).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the study was to evaluate the effects of the inclusion of different levels of turnip cake (TNF) on the chemical composition, digestibility and quality of elephant grass silage. Due to the quality of the oil extracted from the seeds, the turnip is being considered as an important option for the biodiesel industry in Brazil. The turnip cake is obtained from the mechanical pressing of the seeds to produce oil, and it differs from the meal by the content of fat. In the meal the fat is less than 1%, due to the use of solvents for the oil extraction. Experimental silos were used in a completely randomized design, in factorial arrangement 2 x 3 (two types of material and four levels of inclusion). The materials were represented for original material (fresh) and ensiled material, with four levels of inclusion of TNF (0, 3, 6, and 9%). Dry matter (DM), ether extract (EE), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), nitrogen indigestible neutral detergent (NIDN), nitrogen indigestible acid detergent (NIDA), ash (MM), lignin (LIG), buffer power (PT), calcium (Ca), phosphorus (P) and in vitro dry matter digestibility (IVDDM) were determined in all materials. In silage, additionally, were determined pH and amoniacal nitrogen (NH3-N). There were effects of inclusion of TNF and the type of material on the DM, CP, ADF, NIDA, P, and MM contents and on IVDDM. The interaction of the two factors was observed to the contents of CP, NDF, ADF, NIDA, Ca and IVDDM. In silage, the DM levels were lower (P < 0.05) than in original material. The values of DM were increased linearly as increased levels of inclusion of TNF. The fibrous components, including NIDN and NIDA, decreased linearly when the TNF increased. In all treatments, values of pH and N-NH3 considered ideal for good silage were observed. The IVDDM was reduced, linearly, with the addition of increasing levels of TNF. A negative correlation (-0.95) between IVDDM and content of EE may explain the tendency of this variable, due to the EE content increased linearly with the addition of TNF. The addition of TNF as an additive in silage of elephant diminished IVDDM. Considering the changes observed in the chemical composition and digestibility of elephant grass silage with TNF as additive, suggests that this should not be included at levels exceeding 3%. On the other hand, the silages with TNF as additive showed appropriate fermentation characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heat transfer in a packed bed of sugar cane bagasse, which is a potential biofuel used in cars and industries, percolated with air flow was studied. The fibers were washed, sieved, oven dried, and afterwards moisture content was adjusted to 4 and 47%. The relative humidity of the air, packing bed technique, and the initial moisture content of the porous media did not have a significant effect on the outlet temperature of the bed. Air flow rate influenced the averaged radial temperature profile, but not the temperature measured at the nearest position to the tube wall. At the end of the experiments, moisture segregation was observed, the lower bed depths being drier than the higher ones. This is an abstract of a paper presented at the 18th International Congress of Chemical Process Engineering (Praque, Czech Republic 8/24-28/2008).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sugarcane juice is a relatively low-cost agricultural resource, abundant in South Asia, Central America and Brazil, with vast applications in producing ethanol biofuel. In that way, a good knowledge of the rheological properties of this raw material is of crucial importance when designing and optimizing unit operations involved in its processing. In this work, the rheological behavior of untreated (USCJ, 17.9 °Brix), clarified (CSCJ, 18.2 °Brix) and mixed (MSCJ, 18.0 °Brix) sugarcane juices was studied at the temperature range from 277K to 373K, using a cone-and-plate viscometer. These fluids were found to present a Newtonian behavior and their flow curves were well-fitted by the viscosity Newtonian model. Viscosity values lied within the range 5.0×10 -3Pas to 0.04×10 -3Pas in the considered temperature interval. The dependence of the viscosity on the temperature was also successfully modeled through an Arrhenius-type equation. In addition to the dynamic viscosity, experimental values of pressure loss in tube flow were used to calculate friction factors. The good agreement between predicted and measured values confirmed the reliability of the proposed equations for describing the flow behavior of the clarified and untreated sugarcane juices. © 2010 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global interest in sugarcane has increased significantly in recent years due to its economic impact on sustainable energy production. Sugarcane breeding and better agronomic practices have contributed to a huge increase in sugarcane yield in the last 30 years. Additional increases in sugarcane yield are expected to result from the use of biotechnology tools in the near future. Genetically modified (GM) sugarcane that incorporates genes to increase resistance to biotic and abiotic stresses could play a major role in achieving this goal. However, to bring GM sugarcane to the market, it is necessary to follow a regulatory process that will evaluate the environmental and health impacts of this crop. The regulatory review process is usually accomplished through a comparison of the biology and composition of the GM cultivar and a non-GM counterpart. This review intends to provide information on non-GM sugarcane biology, genetics, breeding, agronomic management, processing, products and byproducts, as well as the current technologies used to develop GM sugarcane, with the aim of assisting regulators in the decision-making process regarding the commercial release of GM sugarcane cultivars. © 2011 The Author(s).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to evaluate crambe seeds germination and vigor under water stress conditions induced by polyethylene glycol solutions. The seeds were germinated on substrate moistened with polyethylene glycol solutions, using the osmotic potentials of 0 (control), -0.2, -0.4, -0.6, -0.8, -1.0, -1.2 and -1.4 MPa. The seeds germination was evaluated by normal seedlings and root emission percentages. Vigor was evaluated by germination average time, relative frequency, velocity and synchronization index. It was observed that more negative osmotic potential caused significant reduction in crambe seed germination and vigor, and no normal seedlings was observed at potentials below -0.6 MPa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results: OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform-near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions: OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level. © 2013 Chandel et al; licensee BioMed Central Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work, a biosensor was built with smart material based on polymer brushes. The biosensor demonstrated a pH-sensitive on-off property, and it was further used to control or modulate the electrochemical responses of the biosensor. This property could be used to realize pH-controlled electrochemical reaction of hydrogen peroxide and HRP immobilized on polymer brushes. The composite film also showed excellent amperometric i-t response toward hydrogen peroxide in the concentration range of 0-13 μM. In future, this platform might be used for self-regulating targeted diagnostic, drug delivery and biofuel cell based on controllable bioelectrocatalysis. © 2013 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Axillary bud outgrowth determines shoot architecture and is under the control of endogenous hormones and a fine-tuned gene-expression network, which probably includes small RNAs (sRNAs). Although it is well known that sRNAs act broadly in plant development, our understanding about their roles in vegetative bud outgrowth remains limited. Moreover, the expression profiles of microRNAs (miRNAs) and their targets within axillary buds are largely unknown. Here, we employed sRNA next-generation sequencing as well as computational and gene-expression analysis to identify and quantify sRNAs and their targets in vegetative axillary buds of the biofuel crop sugarcane (Saccharum spp.). Computational analysis allowed the identification of 26 conserved miRNA families and two putative novel miRNAs, as well as a number of trans-acting small interfering RNAs. sRNAs associated with transposable elements and protein-encoding genes were similarly represented in both inactive and developing bud libraries. Conversely, sequencing and quantitative reverse transcription-PCR results revealed that specific miRNAs were differentially expressed in developing buds, and some correlated negatively with the expression of their targets at specific stages of axillary bud development. For instance, the expression patterns of miR159 and its target GAMYB suggested that they may play roles in regulating abscisic acid-signalling pathways during sugarcane bud outgrowth. Our work reveals, for the first time, differences in the composition and expression profiles of diverse sRNAs and targets between inactive and developing vegetative buds that, together with the endogenous balance of specific hormones, may be important in regulating axillary bud outgrowth. © 2013 © The Author(2) [2013].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this work was to determine the levels of protein and the amino acid distribution in the cell mass of yeast strains (Saccharomyces sensu stricto) originated from Brazilian bioethanol industries. The protein was analyzed with the Kjeldahl method and the amino acids, by using high-performance liquid chromatography (HPLC). The percentages of the protein found ranged from 39 to 49%. The results show that in spite of some variation in numbers between the different yeast strains, all of them presented an amino acid profile similar to the one in the literature for S. cerevisae. The amino acids that have occurred in the largest amounts were: aspartic, glutamic acids and lysine, and those in the lowest amounts were: cysteine and methionine. Although the characteristics of the feedstock used and the process conditions are determinant of the protein values obtained in dry mass, this work elucidates that the intrinsic properties of the yeast strain influence these values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although many Brazilian sugar mills initiate the fermentation process by inoculating selected commercial Saccharomyces cerevisiae strains, the unsterile conditions of the industrial sugar cane ethanol fermentation process permit the constant entry of native yeast strains. Certain of those native strains are better adapted and tend to predominate over the initial strain, which may cause problems during fermentation. In the industrial fermentation process, yeast cells are often exposed to stressful environmental conditions, including prolonged cell recycling, ethanol toxicity and osmotic, oxidative or temperature stress. Little is known about these S. cerevisiae strains, although recent studies have demonstrated that heterogeneous genome architecture is exhibited by some selected well-adapted Brazilian indigenous yeast strains that display high performance in bioethanol fermentation. In this study, 11 microsatellite markers were used to assess the genetic diversity and population structure of the native autochthonous S. cerevisiae strains in various Brazilian sugar mills. The resulting multilocus data were used to build a similarity-based phenetic tree and to perform a Bayesian population structure analysis. The tree revealed the presence of great genetic diversity among the strains, which were arranged according to the place of origin and the collection year. The population structure analysis revealed genotypic differences among populations; in certain populations, these genotypic differences are combined to yield notably genotypically diverse individuals. The high yeast diversity observed among native S. cerevisiae strains provides new insights on the use of autochthonous high-fitness strains with industrial characteristics as starter cultures at bioethanol plants. © 2013 John Wiley & Sons, Ltd.