185 resultados para BAND GAP
Resumo:
A strong greenish-light photoluminescence (PL) emission was measured at room temperature for disordered and ordered powders of CaMoO4 prepared by the polymeric precursor method. The structural evolution from disordered to ordered powders was accompanied by XRD. Raman spectroscopy, and TEM imagery. High-level quantum mechanical calculations in the density functional framework were used to interpret the formation of the structural defects of disorder powders in terms of band diagram and density of states. Complex cluster vacancies [MoO3 center dot V-O(z)] and [CaO7 center dot V-O(z)] (where V-O(z) = V-O(X), V-O(center dot), V-O(center dot center dot)) were suggested to be responsible to the appearance of new states shallow and deeply inserted in the band gap. These defects give rise to the PL in disordered powders. The natural PL emission of ordered CaMoO4 was attributed to an intrinsic slight distortion of the [MoO4] tetrahedral in the short range.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Strontium zirconate (SrZrO3) powders have been synthesized by the polymeric precursor method after heat treatment at different temperatures for 2 h in oxygen atmosphere. The decomposition of precursor powder was followed by thermogravimetric analysis, X-ray diffraction (XRD) and Fourier transform Raman (FT-Raman). The UV-vis absorption spectroscopy measurements suggested the presence of intermediary energy levels in the band gap of structurally disordered powders. XRD, Rietveld refinement and FT-Raman revealed that the powders are free of secondary phases and crystallizes in the orthorhombic structure. (C) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
Disordered and crystalline Ba0.45Sr0.55TiO3 (BST) powder processed at low temperature was synthesized by the polymeric precursor method. The single-phase perovskite structure of the ceramics was identified by the Raman and X-ray diffraction techniques. Photoluminescence at room temperature was observed only in a disordered BST sample. Increasing the calcination time intensified the photoluminescence (PL), which reached its maximum value in the sample heat treated at 300 degrees C for 30 h. This emission may be correlated with the structural disorder. Periodic ab initio quantum-mechanical calculations using the CRYSTAL98 program can yield important information regarding the electronic and structural properties of crystalline and disordered solids. The experimental and theoretical results indicate the presence of intermediary energy levels in the band gap. This is ascribed to the break in symmetry, which is responsible for visible photoluminescence in the material's disordered state at room temperature. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The correlation between experimental data and theoretical calculations have been investigated to explain the photoluminescence at room temperature of Ba(Ti0.75Zr0.25)O-3 (BTZ) thin films prepared by the polymeric precursor method. The degree of structural order-disorder was investigated by X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy and photoluminescence (PL) measurements. First-principles quantum mechanical calculations based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and deformed asymmetric models. The electronic properties are analyzed and the relevance of the present theoretical and experimental results on the PL behavior is discussed. The presence of localized electronic levels and a charge gradient in the band gap due to a break in symmetry, are responsible for the PL in disordered BTZ lattice. (c) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The present paper describes the synthesis, characterization, structural refinement and optical absorption behavior of lead tungstate (PbWO(4)) powders obtained by the complex polymerization method heat treated at different temperatures for 2h in air atmosphere. PbWO(4) powders were characterized by X-ray diffraction (XRD), Rietveld refinement, Fourier transform Raman (FT-Raman) spectroscopy and ultraviolet visible (UV-vis) absorption spectroscopy measurements. XRD, Rietveld refinement and FT-Raman revealed that PbWO(4) powders are free of secondary phases and crystallizes in a tetragonal structure. The UV-vis absorption spectroscopy measurements suggest the presence of intermediary energy levels into the band gap of structurally disordered powders. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Radioluminescence (RL) emissions were obtained for the BaZrO3 self-assembled nanocrystals under decaoctahedral shape, if produced via microwave-assisted hydrothermal method. Trapped F centers created within the band gap are the result of order-disorder effects, which act as key factors supporting significant RL emission through a detrapping process. The influences of size and morphology on RL properties are take into account. No radiation damage or loss of emission intensity was observed. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.