128 resultados para Arachis hypogaeae
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Com o objetivo de estudar os efeitos de diferentes períodos de competição das plantas daninhas sobre alguns parâmetros produtivos da cultura do amendoim cv. Tatu-53, foi instalada e conduzida a presente pesquisa, em Jaboticabal, em solo Latossol Vermelho Escuro - fase arenosa. O delineamento experimental utilizado foi o de blocos casualizados, sendo os tratamentos divididos em dois grupos: no primeiro, a cultura foi mantida no mato desde a germinação até determinada fase de seu ciclo de desenvolvimento e, no segundo a cultura foi conservada livre da competição por períodos equ ivalentes ao primeiro grupo, após o qual o mato foi deixado crescer livremente. As extensões dos períodos estudados foram, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 e 100 dias. Nas condições em que foi desenvolvido o experimento, o amendoim mostrou-se relativamente tolerante à competição de maneira que um período de 10 dias livre das plantas daninhas no início de seu ciclo de desenvolvimento proporcionou -lhe condições ple nas de produtividade, comparada à te stemunha no limpo. Por outro lado, quando foi pe rmitido que o mato desenvolvesse desde o início do ciclo de cultura, o período acima do qual a competição alterou a produtividade de cultura foi igual ou superior a 50 dias.
Resumo:
Arachis villosulicarpa is a perennial species cultivated for its soft and tasty seeds by indigenous inhabitants of the Mate Grosso State, Brazil. Besides A. hypogaea, this species is considered as the only species of Arachis which represents a valuable food source for human consumption. Due to the lack of knowledge concerning the genetic diversity of A. villosulicarpa, this study was conducted to evaluate the genetic variability of the accessions from the Germplasm Collection of CENARGEN/EMBRAPA (Brasilia, DF, Brazil) and Institute Agronomico (IAC, Campinas, SP, Brazil). In addition, the genetic similarity between A. villosulicarpa, the related wild species A. pietrarellii, and the cultivated peanut A. hypogaea cv. Tatu was evaluated. From the entire sample analyzed of A. villosulicarpa, the accession from Institute Agronomico showed the highest indices of diversity for both enzymatic systems analyzed, pointing this accession as a promising source of genetic variability that must be preserved in the Germplasm Bank. A high level of genetic similarity was observed between A. pietrarellii and A. villosulicarpa, supporting previous suggestions that A. pietrarellii could be the ancestral progenitor species of A. villosulicarpa or that both species originated from a common ancestor.
Resumo:
Botutatu is a new released peanut cultivar, selected from the Brazilian cultivar Tatu by progeny testing. It belongs to Valencia type and has similar characteristics of cultivar Tatu, differing from the late by being 23.7% superior in pod yield.
Resumo:
Four A-genome species of the genus Arachis ( A. cardenasii, A. correntina, A. duranensis, A. kempff-mercadoi), three B genomes species ( A. batizocoi, A. ipaensis and A. magna), the AABB allotetraploid A. hypogaea (cultivated peanut) and introgression lines resulting from a cross between A. hypogaea and A. cardenasii were analyzed by RFLP. The A genome species (cytologically characterized by the presence of a small chromosome pair 'A') were closely similar to each other and shared a large number of restriction fragments. In contrast, the B genome species differed more from one another and shared few fragments. The results of this study indicate that the absence of the small chromosome pair is not a good criterion for grouping species of section Arachis as B genome species, since their genome might be quite distinct from the B genome of A. hypogaea. The lowest genetic variation was detected within accessions of A. duranensis (17 accessions), followed by A. batizocoi (4 accessions) and A. cardenasii (9 plants of accession GKP 10017). The high level of genetic variation found in A. cardenasii might indicate that not all accessions of wild species of Arachis are autogamous, as reported for A. hypogaea.
Resumo:
The genus Arachis is endemic to South America and comprises 80 species, 69 of which have already been described and eleven not yet published. The genus includes the cultivated peanut ( A. hypogaea) and several forage species, the most important ones being A. glabrata and A. pintoi. Accessions of section Rhizomatosae, including three tetraploid species 2n = 4x = 40 (A. glabrata, A. pseudovillosa and A. nitida nom. nud.) and one diploid species 2n = 2x = 20 (A. burkartii), were evaluated using RAPD markers to assay genetic variability within and among species. The ten random primers used yielded a total of 113 polymorphic bands. The data were scored as the presence or absence of each band in each sample. A distance matrix and dendrogram were obtained using Link's coefficient and the neighbor-joining method. Most accessions analyzed grouped into two major clusters: the first comprised most accessions of A. glabrata and accessions of A. nitida, and the second cluster comprised accessions of A. burkartii. Arachis pseudovillosa and a few accessions of A. glabrata and A. nitida were placed between these major clusters. The diploid and tetraploid species were grouped quite separately, suggesting that the tetraploids did not originate from the diploid species analyzed.
Resumo:
Nuclear restriction fragment length polymorphism (RFLP) analysis was used to determine the wild diploid Arachis species that hybridized to form tetraploid domesticated peanut. Results using 20 previously mapped cDNA clones strongly indicated A. duranensis as the progenitor of the A genome of domesticated peanut and A. ipaensis as the B genome parent. A large amount of RFLP variability was found among the various accessions of A. duranensis, and accessions most similar to the A genome of cultivated peanut were identified. Chloroplast DNA RFLP analysis determined that A. duranensis was the female parent of the original hybridization event. Domesticated peanut is known to have one genome with a distinctly smaller pair of chromosomes ('A'), and one genome that lacks this pair. Cytogenetic analysis demonstrated that A. duranensis has a pair of 'A' chromosomes, and A. ipaensis does not. The cytogenetic evidence is thus consistent with the RFLP evidence concerning the identify of the progenitors. RFLP and cytogenetic evidence indicate a single origin for domesticated peanut in Northern Argentina or Southern Bolivia, followed by diversification under the influence of cultivation.
Resumo:
Genetic variation within and among accessions of the genus Arachis representing sections Extranervosae, Caulorrhizae, Heteranthae, and Triseminatae was evaluated using RFLP and RAPD markers. RAPD markers revealed a higher level of genetic diversity than did RFLP markers, both within and among the species evaluated. Phenograms based on various band-matching algorithms revealed three major clusters of similarity among the sections evaluated. The first group included the species from section Extranervosae, the second group consisted of sections Triseminatae, Caulorrhizae, and Heteranthae, and the third group consisted of one accession of Arachis hypogaea, which had been included as a representative of section Arachis. The phenograms obtained from the RAPD and RFLP data were similar but not identical. Arachis pietrarellii, assayed only by RAPD, showed a high degree of genetic similarity with Arachis villosulicarpa. This observation supported the hypothesis that these two species are closely related. It was also shown that accession V 7786, previously considered to be Arachis sp. aff. pietrarellii, and assayed using both RFLPs and RAPDs, was possibly a new species from section Extranervosae, but very distinct from A. pietrarellii.
Resumo:
Wild Arachis germplasm includes potential forage species, such as the rhizomatous Arachis glabrata and the stoloniferous A. pinto and A. repens. Commercial cultivars of A. pintoi have already been released in Australia and in several Latin American countries, and most of these cultivars were derived from a single accession of A. pintoi (GK 12787). Arachis repens is less productive as a forage plant than is A. pintoi. However, it can be crossed with A. pintoi, and thus has good potential as germplasm for the improvement of A. pintoi. Arachis repens is also used as an ornamental plant and ground cover. Many new accessions of these two stoloniferous species are now available, and they harbor significant genetic variability beyond that available in the few older accessions, previously available. Therefore, these new accessions need to be conserved, documented and considered in terms of their potential for crop improvement and direct commercial use. Sixty-four accessions of this new germplasm were analyzed using RAPD analysis. Most of the accessions of A. repens grouped together into a clearly distinct group. In general, the accessions from the distinct valleys of the Jequitinhonha, Sao Francisco and Parana rivers did not group together, suggesting there is not a tight relation between dispersion by rivers and the geographic distribution of genetic variation in these species.
Resumo:
Two wild diploid (2n = 20 chromosomes) and self-pollinating Arachis species, Arachis Pintoi Krapov and W.C. Gregory and A. villosulicarpa Hoehne were submmited to C-band technique to karyotype analyses. Root tips were employed in the analyses. Morphometric data chose that chromosome lengths varied from 3.12 in A. villosulicarpa to 1.45 in A. Pintoi. Karyotype formula obtained was 10sm to A. Pintoi and 9sm + 1m to A. villosulicarpa. There was a predominance of pericentromeric C-band in all mitotic metaphasic chromosomes in both species. Besides C-band values, both species still did not differ in respect to chromosome absolute and relative lengths, centromeric index, symmetry index and total karyotype haploid length. C-band and morphometric data did not show strong or significant differences which could separate these two species of peanut which belong to evolutive different sections.
Resumo:
Arachis pintoi is an alternative to forage production in the tropics. Its germplasm comprises more than 150 accessions, that could be used to improve it. Our objective was the isolation and characterization of microsatellite loci in A. pintoi to be used to molecular evaluation of this germplasm and of A. repens (section Caulorrhizae). Seven loci were analyzed using five accessions of A. repens and 20 accessions of A. pintoi. The high variation found makes clear the high potential of this marker in genetic studies in these species. The developed markers showed total transferability to A. repens.
Resumo:
Some Arachis species are widely used as commercial plants, e.g. the groundnut A. hypogaea, an important source of good quality protein and oil, and A. pintoi and A. glabrata, that are utilized as forage species. Germplasm of most Arachis species is available in germplasm banks. However, little it is known about the genetic attributes of this germplasm, and mainly about its genetic variability, which is very important for its maintenance. In the present study RAPDs were used to assay the genetic variation within and among 48 accessions of five sections of the genus Arachis and to establish the genetic relationships among these accessions. Ten of 34 primers tested were selected for DNA amplification reactions since they yielded the largest numbers of polymorphic loci. A dendrogram was constructed based on data from the 10 primers selected. Eighty RAPD polymorphic bands were analyzed among the accessions studied. The relationships among species based on RAPDs were similar to those previously reported based on morphological, cytological and crossability data; demonstrating that RAPDs can be used to determine the genetic relationships among species of the different sections of the genus Arachis. In general, wide variation was found among accessions and low variation was found within the accessions that had two or more plants analyzed. However, higher polymorphism was found in the section Trierectoides and in one accession of A. major, indicating that generalizations should be avoided and each species should be analyzed in order to establish collection and maintenance strategies.
Resumo:
The Arachis section is the most important of the nine sections of the genus Arachis because it includes the cultivated peanut, Arachis hypogaea. The genetic improvement of A. hypogaea using wild relatives is at an early stage of development in spite of their potential as sources of genes, including those for disease and pests resistance, that are not found in the A. hypogaea primary gene pool. Section Arachis species germplasm has been collected and maintained in gene banks and its use and effective conservation depends on our knowledge of the genetic variability contained in this material. Microsatellites are routinely used for the analysis of genetic variability because they are highly polymorphic and codominant. The objective of this study was to evaluate the transferability of microsatellite primers and the assay of genetic variability between and within the germplasm of some species of the Arachis section. Fourteen microsatellite loci developed for three different species of Arachis were analyzed and 11 (78%) were found to be polymorphic. All loci had transferability to all the species analyzed. The polymorphic loci were very informative, with expected heterozygosity per locus ranging from 0.70 to 0.94. In general, the germplasm analyzed showed wide genetic variation. © 2006 Sociedade Brasileira de Genética.
Resumo:
Some wild species of the genus Arachis have demonstrated potential for improvement of peanuts. This work was performed to evaluate the occurrence and symptoms of Enneothrips flavens and Stegasta bosquella and its effects on agronomic traits of wild Arachis accessions. Nine accessions of wild Arachis species and a commercial A. hypogaea variety were studied in a split plot statistical scheme with a completely randomized block design and four replications. The main plots consisted of plants sprayed or not sprayed for insect control, while the subplots comprised the peanut accessions. Accessions GKP10017 (A. cardenasii) and V7639 (A. kuhlmannii) showed the lowest percentages of leaflets with E. flavens and S. bosquella. Accessions V9912, V7639 and V8979 (all three A. kuhlmannii) and V13250 (A. kempff-mercadoi) showed the lowest responses to insecticide application among the various plant traits evaluated. These accessions are of interest for further studies to identify mechanisms of resistance, to be used in breeding programs for resistance to these insects.