82 resultados para Aquatic humic acid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new procedure was developed for the in situ characterization of the lability of metal species in aquatic systems by using a system equipped with a diffusion membrane and cellulose organomodified with p-aminobenzoic acid groups (DM-Cell-PAB). To this end, the DM-Cell-PAB system was prepared by adding cellulose organomodified with p-aminobenzoic acid groups (Cell-PAB) to pre-purified cellulose bags. After the DM-Cell-PAB system was sealed, it was examined in the laboratory to evaluate the influence of complexation time, mass of exchanger, pH, metal ions (Cu, Cd, Fe, Mn, and Ni), and concentration of organic matter on the relative lability of metal species. It was found that the pH and kinetics strongly influence the process of metal complexation by the DM-Cell-PAB system. At all pH levels, Cd, Mn, and Ni showed lower complexation with Cell-PAB resin than Cu and Fe metals. Note that relative lability of metals complexed to aquatic humic substances (AHS) in the presence of Cell-PAB resin showed the following order: Cu congruent to Fe >> Ni > Mn=Cd. The results presented here also indicate that increasing the AHS concentration decreases the lability of metal species by shifting the equilibrium to AHS-metal complexes. Our results indicate that the system under study offers an interesting alternative that can be applied to in situ experiments for differentiation of labile and inert metal species in aquatic systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enzyme-Linked Immunosorbent Assay (ELISA) has been evaluated by analyzing rich-humic water samples from tropical rivers. The samples were spiked with atrazine at ppb level Different pHs (4 to 9) and humic concentrations (2.5 to 40 mg L-1) were investigated. The assay performance showed a strong dependence on the pH values and amount of humic matter at low atrazine concentration. From all the conditions studied the low pH (pH 4) and high humic substances concentrations (40 mg L-1) showed the greatest influence. The IC50 value to control sample (no humic) diminished from 0.28 nmol L-1 to 0.64 nmol L-1 to humic acid solution. This effect is specially noted for the humic acid fractions, since fulvic acid fractions showed no significant change on the immunoassay results. Additionally, it has been demonstrated that at basic pH the matrix effect produced by the natural Brazilian water sample containing humic substances even at 40 mg L-1 disappears. Therefore, the ELISA method used to determine atrazine, can be employed to determine this pesticide in water samples containing humic substances without prior preparation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interactions of tropical aquatic fulvic acids (AFA) with chlorine and formation of trihalomethanes were characterized by fluorescence spectroscopy. The aquatic humic substances (AHS) were isolated from a dark-brown stream (located in a environmental protection area near Cubatão city in São Paulo State, Brazil) by means of the collector XAD 8 according the procedure recommended by the International Humic Substances Society. The photoluminescence measurements were made by using a Perkin Elmer spectrometer; AHS, aquatic humic acids (AHA) and AFA samples were assayed. The interactions of AFA and chlorine were characterized by using different reaction times (1, 24, 48, 72 and 168 h) and chlorine concentrations (2.5, 5.0, 10.0 and 20.0 mg L-1). The relative fluorescence intensity for AFA was significantly decreased with the increasing of chlorine concentration and reaction time. The reduction of fluorescence intensity in the region of longer wavelength was interpreted as an indicative of interaction between condensed aromatic groups of AFA and chlorine.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new procedure was developed in this study, based on a system equipped with a cellulose membrane and a tetraethylenepentamine hexaacetate chelator (MD-TEPHA) for in situ characterization of the lability of metal species in aquatic systems. To this end, the DM-TEPHA system was prepared by adding TEPHA chelator to cellulose bags pre-purified with 1.0 mol L-1 of HCl and NaOH solutions. After the MD-TEPHA system was sealed, it was examined in the laboratory to evaluate the influence of complexation time (0-24 h), pH (3.0, 4.0, 5.0, 6.0 and 7.0), metal ions (Cu, Cd, Fe, Mn and Ni) and concentration of organic matter (15, 30 and 60 mg L-1) on the relative lability of metal species by TEPHA chelator. The results showed that Fe and Cu metals were complexed more slowly by TEPHA chelator in the MD-TEPHA system than were Cd, Ni and Mn in all pH used. It was also found that the pH strongly influences the process of metal complexation by the MD-TEPHA system. At all the pH levels, Cd, Mn and Ni showed greater complexation with TEPHA chelator (recovery of about 95-75%) than did Cu and Fe metals. Time also affects the lability of metal species complexed by aquatic humic substances (AHS); while Cd, Ni and Mn showed a faster kinetics, reaching equilibrium after about 100 min, and Cu and Fe approached equilibrium after 400 min. Increasing the AHS concentration decreases the lability of metal species by shifting the equilibrium to AHS-metal complexes. Our results indicate that the system under study offers an interesting alternative that can be applied to in situ experiments for differentiation of labile and inert metal species in aquatic systems. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper deals with the development and optimization of an analytical procedure using ultrafiltration and a flow-injection system, and its application in in-situ experiments to characterize the lability and availability of metal species in humic-rich hydrocolloids. The on-line system consists of a tangential flow ultrafiltration device equipped with a 3-kDa filtration membrane. The concentration of free ions in the filtrate was determined by atomic-absorption spectrometry, assuming that metals not complexed by aquatic humic substances (AHS) were separated from the complexed species (M-AHS) retained by the membrane. For optimization, exchange experiments using Cu(II) solutions and AHS solutions doped with the metal ions Ni(II), Mn(II), Fe(III), Cd (II), and Zn(II) were carried out to characterize the stability of the metal-AHS complexes. The new procedure was then applied in-situ at a tributary of the Ribeira do Iguape river (Iguape, São Paulo State, Brazil) and evaluated using the ions Fe(III) and Mn(II), which are considered to be essential constituents of aquatic systems. From the exchange between metal-natural organic matter (M-NOM) and the Cu(II) ions it was concluded that Cu(II) concentrations > 485 mu g L(-1) were necessary to obtain maximum exchange of the complexes Mn-NOM and Fe-NOM, corresponding to 100% Mn and 8% Fe. Moreover, the new analytical procedure is simple and opens up new perspectives for understanding the complexation, transport, stability, and lability of metal species in humic-rich aquatic environments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main pool of dissolved organic carbon in tropical aquatic environments, notably in dark-coloured streams, is concentrated in humic substances (HS). Aquatic HS are large organic molecules formed by micro-biotic degradation of biopolymers and polymerization of smaller organic molecules. From an environmental point of view, the study of metal-humic interactions is often aimed at predicting the effect of aquatic HS on the bioavailability of heavy metal ions in the environment. In the present work the aquatic humic substances (HS) isolated from a dark-brown stream (located in an environmental protection area near Cubatao city in São Paulo-State, Brazil) by means of the collector XAD-8 were investigated. FTIR studies showed that the carboxylic carbons are probably the most important binding sites for Hg(II) ions within humic molecules. C-13-NMR and H-1-NMR studies of aquatic HS showed the presence of constituents with a high degree of aromaticity (40% of carbons) and small substitution. A special five-stage tangential-flow ultrafiltration device (UF) was used for size fractionation of the aquatic HS under study and for their metal species in the molecular size range 1-100 kDa (six fractions). The fractionation patterns showed that metal traces remaining in aquatic HS after their XAD-8 isolation have different distributions. Generally, the major percentage of traces of Mn, Cd and Ni (determined by ICP-AES) was preferably complexed by molecules with relatively high molecular size. Cu was bound by fractions with low molecular size and Co showed no preferential binding site in the various humic fractions. Moreover, the species formed between aquatic HS and Hg(II), prepared by spiking (determined by CVAAS), appeared to be concentrated in the relatively high molecular size fraction F-1 (> 100 kDa).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The influence of structural features of tropical river humic substances (HS) on their capability to reduce mercury(II) in aqueous solutions was studied. The HS investigated were conventionally isolated from Rio Negro water-Amazonas State/Brazil by means of the collector XAD 8. In addition, the isolated HS were on-line fractionated by tangential-flow multistage ultrafiltration (nominal molecular-weight cut-offs: 100, 50, 30, 10, 5 kDa) and characterized by potentiometry and UV/VIS spectroscopy. The reduction of Hg(II) ions to elemental Hg by size-fractions of Rio Negro HS was assessed by cold-vapor AAS (CVAAS). UV/VIS spectrometry revealed that the fractions of high molecular-size (F-1 > 100 kDa and F-2: 50-100 kDa) have a higher aromaticity compared to the fractions of small molecular-size (F-5: 5-10 kDa, F-6: < 5 kDa). In contrast, the potentiometric study showed different concentration of functional groups in the studied HS fractions. The reduction of Hg(II) by aquatic HS fractions at pH 5 proceeded in two steps (I, II) of slow first order kinetics (t(1/2) of I: 160 min, t(1/2) of II: 300 min) weakly influenced by the molecular-size, in contrast to the differing degree of Hg(II) reduction (F-5 > F-2 > > F-1 > F-3 > F-4 > > F-6). Accordingly, Hg(II) ions were preferably reduced by HS molecules having a relatively high ratio of phenolic/carboxylic groups and a small concentration of sulfur. From these results a complex 'competition' between reduction and complexation of mercury(II) by aquatic HS occurring in tropical rivers such as the Rio Negro can be suggested. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The evolution of elemental Hg from its environmental compounds has already been supposed to be an important process within the global mercury cycle. The present study characterizes the abiotic reduction of Hg(II) ions by typical river humic substances (HS) conventionally pre-isolated by the adsorbent XAD 8 from the Rio Negro near Manaus, Brazil. For the investigation of this reduction process a special reaction and Hg(0) trapping unit combined with cold-vapor atomic absorption spectrometry (CVAAS) was developed. Preconcentration of traces of mercury(II), if required, was obtained by a home-made FIA system using microcolumns filled with the Hg(II)-selective collector CheliteS(R) (Serva Company). The effect of environmentally relevant parameters such as the pH value, the Hg(II)/HS ratio and the HS concentration on the I-IE;(II) reduction process was studied as a function of the time. The Hg(0) production was highest at pH 8.0 and in the case of decreasing HS amounts (0.5 mg) when about 65% of initially 1.0 mug Hg(H) was reduced within 50 h. Moreover, the reduction efficiency of HS towards HE;(II) strongly depended on the HS concentration but hardly on the Hg(II)/HS ratio. The reduction kinetics followed a relatively slow two-step first-order mechanism with formal rate constants of about 0.1 and 0.02 h(-1), respectively. Based on these findings the possible relevance of the abiotic evolution of mercury in humic-rich aquatic environments is considered. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aquatic humic substances (HS) investigated in this study with respect to their binding capability towards mercury(II) were isolated from the river Rio Negro, Amazonas State - Brazil, by means of the adsorbent XAD 8. Labile/inert fractions of inorganic Hg(II) complexes formed with these HS were characterized using an ion-exchange batch and column technique, respectively, based on Chelite S. This collector exhibits high Hg(II) distribution coefficients, Kd, up to the order of 104 decreasing, however, in the case of small Hg(II)/HS ratios (< 0.1 μg Hg(II) / mg HS). The influence of different complexation parameters (ratio of Hg(II)/HS, pH, contact time, complexing time) relevant for Hg(II) binding in aquatic environments was assessed. The Hg(II) lability in dissolved HS is mainly influenced by the mass ratio of Hg(II)/HS and the ageing of Hg(II)-HS species formed. This is particularly obvious in the case of low Hg(II) loading of HS where slow transformation processes of freshly formed Hg(II)-HS species significantly decrease their lability, leading to incomplete recoveries (< 20%) of the total Hg(II) bound to HS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The interaction between humic substances and poly(o-ethoxyaniline) (POEA), a conducting polymer, was investigated for both solution and self-assembled films. The results have shown that the humic substances induce a doping of POEA by protonation, as indicated by UV-Vis and Raman spectroscopies. The atomic force microscopy (AFM) studies on the self-assembled films have shown that the average roughness of the polymer film has increased after exposing it to humic substances (fulvic and humic acids), consistent with the interaction between POEA and humic substances. However, this change in morphology is reversible by washing the films with water in agreement with the electrical data allowing using this system in sensor applications. Here, the sensor formed by an array of different sensing units was able to detect and distinguish humic substances in aqueous solution, as shown by multivariate analysis (principal component analysis). The motivation to detect humic substance comes due to its importance in terms of quality control of water or soil. ©2005 Sociedade Brasileira de Química.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)