74 resultados para Angular-momentum Transfer
Time evolution of the Wigner function in discrete quantum phase space for a soluble quasi-spin model
Resumo:
The discrete phase space approach to quantum mechanics of degrees of freedom without classical counterparts is applied to the many-fermions/quasi-spin Lipkin model. The Wi:ner function is written for some chosen states associated to discrete angle and angular momentum variables, and the rime evolution is numerically calculated using the discrete von Neumnnn-Liouville equation. Direct evidences in the lime evolution of the Wigner function are extracted that identify a tunnelling effect. A connection with a SU(2)-based semiclassical continuous approach to the Lipkin model is also presented.
Resumo:
For m(2) < a(2) + q(2), with m, a, and q respectively the source mass, angular momentum per unit mass, and electric charge, the Kerr-Newman (KN) solution of Einstein's equation reduces to a naked singularity of circular shape, enclosing a disk across which the metric components fail to be smooth. By considering the Hawking and Ellis extended interpretation of the KN spacetime, it is shown that, similarly to the electron-positron system, this solution presents four inequivalent classical states. Making use of Wheeler's idea of charge without charge, the topological structure of the extended KN spatial section is found to be highly non-trivial, leading thus to the existence of gravitational states with half-integral angular momentum. This property is corroborated by the fact that, under a rotation of the space coordinates, those inequivalent states transform into themselves only after a 4π rotation. As a consequence, it becomes possible to naturally represent them in a Lorentz spinor basis. The state vector representing the whole KN solution is then constructed, and its evolution is shown to be governed by the Dirac equation. The KN solution can thus be consistently interpreted as a model for the electron-positron system, in which the concepts of mass, charge and spin become connected with the spacetime geometry. Some phenomenological consequences of the model are explored.
Resumo:
The quantized vortex states of a weakly interacting Bose-Einstein condensate of atoms with attractive interatomic interaction in an axially symmetric harmonic oscillator trap are investigated using the numerical solution of the time-dependent Gross-Pitaevskii equation obtained by the semi-implicit Crank-Nicholson method. The collapse of the condensate is studied in the presence of deformed traps with the larger frequency along either the radial or the axial direction. The critical number of atoms for collapse is calculated as a function of the vortex quantum number L. The critical number increases with increasing angular momentum L of the cortex state but tends to saturate for large L.
Resumo:
Conservation laws in gravitational theories with diffeomorphism and local Lorentz symmetry are studied. Main attention is paid to the construction of conserved currents and charges associated with an arbitrary vector field that generates a diffeomorphism on the spacetime. We further generalize previous results for the case of gravitational models described by quasi-invariant Lagrangians, that is, Lagrangians that change by a total derivative under the action of the local Lorentz group. The general formalism is then applied to the teleparallel models, for which the energy and the angular momentum of a Kerr black hole are calculated. The subsequent analysis of the results obtained demonstrates the importance of the choice of the frame.
Resumo:
In a covariant gauge we implicitly assume that the Green's function propagates information from one point of the space-time to another, so that the Green's function is responsible for the dynamics of the relativistic particle. In the light front form one would naively expect, that this feature would be preserved. In this manner, the fermionic field propagator can be split into a propagating piece and a non-propagating (contact) term. Since the latter (contact) one does not propagate information; and therefore, supposedly can be discarded with no harm to the field dynamics we wanted to know what would be the impact of dropping it off. To do that, we investigated its role in the Ward identity in the light front. Here we use the terminology Ward identity to identify the limiting case of photon's zero momentum transfer in the vertex from the more general Ward-Takahashi identity with nonzero momentum transfer.
Resumo:
The aim of this work is to show how to renormalize the nucleon-nucleon interaction at next-to-next-to-leading order using a. systematic subtractive renormalization approach with multiple subtractions. As an example, we calculate the phase shifts for the partial waves with total angular momentum J = 2. The intermediate driving terms at each recursive step as well as the renormalized T-matrix are also shown. We conclude that our method is reliable for singular potentials such as the two-pion exchange and derivative contact interactions.
Resumo:
We investigate the spin of the electron in a non-relativistic context by using the Galilean covariant Pauli-Dirac equation. From a non-relativistic Lagrangian density, we find an appropriate Dirac-like Hamiltonian in the momentum representation, which includes the spin operator in the Galilean covariant framework. Within this formalism, we show that the total angular momentum appears as a constant of motion. Additionally, we propose a non-minimal coupling that describes the Galilean interaction between an electron and the electromagnetic field. Thereby, we obtain, in a natural way, the Hamiltonian including all the essential interaction terms for the electron in a general vector field.
Resumo:
As an application of the new realistic three-dimensional (3D) formalism reported recently for three-nucleon (3N) bound states, an attempt is made to study the effect of three-nucleon forces (3NFs) in triton binding energy in a non partial wave (PW) approach. The spin-isospin dependent 3N Faddeev integral equations with the inclusion of 3NFs, which are formulated as function of vector Jacobi momenta, specifically the magnitudes of the momenta and the angle between them, are solved with Bonn-B and Tucson-Melbourne NN and 3N forces in operator forms which can be incorporated in our 3D formalism. The comparison with numerical results in both, novel 3D and standard PW schemes, shows that non PW calculations avoid the very involved angular momentum algebra occurring for the permutations and transformations and it is more efficient and less cumbersome for considering the 3NF.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The frame dependence of the pair-term contribution to the electromagnetic form factor of the pion is studied within the Light Front approach. A symmetric ansatz for the pion Bethe-Salpeter amplitude with a pseudo scalar coupling of the constituent to the pion field is used. In this model, the pair term vanishes for the Drell-Yan condition, while it is dominant for momentum transfer along the light-front direction.
Resumo:
A simplified version of a time-dependent annular billiard is studied. The dynamics is described using nonlinear maps and we consider two different configurations for the billiard, namely (i) concentric and (ii) eccentric cases. For the concentric case and for a null angular momentum, we confirm that the results for the Fermi-Ulam model are recovered and the particle does not experience the phenomenon of Fermi acceleration. However, on the eccentric case the particle demonstrates unlimited energy gain and Fermi acceleration is therefore observed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An analytical approach for the spin stabilized satellite attitude propagation is presented using the non-singular canonical variables to describe the rotational motion. Two sets of variables were introduced for Fukushima in 1994 by a canonical transformation and they are useful when the angle between z-satellite axis of a coordinate system fixed in artificial satellite and the rotational angular momentum vector is zero or when the angle between Z-equatorial axis and rotation angular momentum vector is zero. Analytical solutions for rotational motion equations and torque-free motion are discussed in terms of the elliptic functions and by the application of some simplification to get an approximated solution. These solutions are compared with a numerical solution and the results show a good agreement for many rotation periods. When the mean Hamiltonian associated with the gravity gradient torque is included, an analytical solution is obtained by the application of the successive approximations' method for the satellite in an elliptical orbit. These solutions show that the magnitude of the rotation angular moment is not affected by the gravity gradient torque but this torque causes linear and periodic variations in the angular variables, long and short periodic variations in Z-equatorial component of the rotation angular moment and short periodic variations in x-satellite component of the rotation angular moment. The goal of this analysis is to emphasize the geometrical and physical meaning of the non-singular variables and to validate the approximated analytical solution for the rotational motion without elliptic functions for a non-symmetrical satellite. The analysis can be applied for spin stabilized satellite and in this case the general solution and the approximated solution are coincidence. Then the results can be used in analysis of the space mission of the Brazilian Satellites. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
We analyse the properties of the Sp(1, R) model states using a basis obtained from the deformed harmonic oscillator wavefunctions. We make an Sp(1, R) calculation for C-12 and consider bases obtained from oblate, triaxial and prolate intrinsic states. The model states are given by angular momentum projection of vibrational phonons, which are associated with giant monopole and quadrupole resonances.