40 resultados para Anaerobic capacity
Resumo:
Pós-graduação em Ciências da Motricidade - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciências da Motricidade - IBRC
Resumo:
Pós-graduação em Ciências da Motricidade - IBRC
Resumo:
The aim of the study was to investigate the effects of acute supplementation of sodium bicarbonate (NaHCO3) on maximal accumulated oxygen deficit (MAOD) determined by a single supramaximal effort (MAODALT) in running and the correlation with 200- and 400-m running performances. Fifteen healthy men (age, 23 ± 4 years; maximal oxygen uptake, 50.6 ± 6.1 mL·kg(-1)·min(-1)) underwent a maximal incremental exercise test and 2 supramaximal efforts at 110% of the intensity associated with maximal oxygen uptake, which was carried out after ingesting either 0.3 g·kg(-1) body weight NaHCO3 or a placebo (dextrose) and completing 200- and 400-m performance tests. The study design was double-blind, crossover, and placebo-controlled. Significant differences were found between the NaHCO3 and placebo conditions for MAODALT (p = 0.01) and the qualitative inference for substantial changes showed a very likely positive effect (98%). The lactic anaerobic contribution in the NaHCO3 ingestion condition was significantly higher (p < 0.01) and showed a very likely positive effect (99% chance), similar to that verified for peak blood lactate concentration (p < 0.01). No difference was found for time until exhaustion (p = 0.19) or alactic anaerobic contribution (p = 0.81). No significant correlations were observed between MAODALT and 200- and 400-m running performance tests. Therefore, we can conclude that both MAODALT and the anaerobic lactic metabolism are modified after acute NaHCO3 ingestion, but it is not correlated with running performance.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Anaerobic efforts are commonly required through repeated sprint during efforts in many sports, making the anaerobic pathway a target of training. Nevertheless, to identify improvements on such energetic way it is necessary to assess anaerobic capacity or power, which is usually complex. For this purpose, authors have postulated the use of short running performances to anaerobic ability assessment. Thus, the aim of this study was to find a relationship between running performances on anaerobic power, anaerobic capacity or repeated sprint ability. Methods Thirteen military performed maximal running of 50 (P50), 100 (P100) and 300 (P300) m on track, beyond of running-based anaerobic sprint test (RAST; RSA and anaerobic power test), maximal anaerobic running test (MART; RSA and anaerobic capacity test) and the W′ from critical power model (anaerobic capacity test). Results By RAST variables, peak and average power (absolute and relative) and maximum velocity were significantly correlated with P50 (r = −0.68, p = 0.03 and −0.76, p = 0.01; −0.83, p < 0.01 and −0.83, p < 0.01; and −0.78, p < 0.01), respectively. The maximum intensity of MART was negatively and significantly correlated with P100 (r = −0.59) and W′ was not statistically correlated with any of the performances. Conclusion MART and W′ were not correlated with short running performances, having a weak performance predicting probably due to its longer duration in relation to assessed performances. Observing RAST outcomes, we postulated that such a protocol can be used during daily training as short running performance predictor.
Resumo:
The maximal lactate steady state (MLSS) is the highest blood lactate concentration that can be identified as maintaining a steady state during a prolonged submaximal constant workload. The objective of the present study was to analyze the influence of the aerobic capacity on the validity of anaerobic threshold (AT) to estimate the exercise intensity at MLSS (MLSS intensity) during cycling. Ten untrained males (UC) and 9 male endurance cyclists (EC) matched for age, weight and height performed one incremental maximal load test to determine AT and two to four 30-min constant submaximal load tests on a mechanically braked cycle ergometer to determine MLSS and MLSS intensity. AT was determined as the intensity corresponding to 3.5 mM blood lactate. MLSS intensity was defined as the highest workload at which blood lactate concentration did not increase by more than 1 mM between minutes 10 and 30 of the constant workload. MLSS intensity (EC = 282.1 ± 23.8 W; UC = 180.2 ± 24.5 W) and AT (EC = 274.8 ± 24.9 W; UC = 187.2 ± 28.0 W) were significantly higher in trained group. However, there was no significant difference in MLSS between EC (5.0 ± 1.2 mM) and UC (4.9 ± 1.7 mM). The MLSS intensity and AT were not different and significantly correlated in both groups (EC: r = 0.77; UC: r = 0.81). We conclude that MLSS and the validity of AT to estimate MLSS intensity during cycling, analyzed in a cross-sectional design (trained x sedentary), do not depend on the aerobic capacity.
Resumo:
Aim. - This study aimed to test if investigate whether the anaerobic work capacity is replenished while exercising at critical power intensity. Then, a known exercise duration, which demands high anaerobic energy contribution, was compared to intermittent exercise duration with passive and active (cycling at critical power intensity) rest periods.Methods. - Nine participants performed five sessions of testing. From the 1st to the 3rd sessions, individuals cycled continuously at different workloads (P-high, P-intermediate and P-low) in order to estimate the critical power and the anaerobic work capacity. The 4th and 5th sessions were performed in order to determine the influence of anaerobic work capacity replenishment oil exercise duration. They consisted of manipulating the resting type (passive or active) between two cycling efforts. The total exercise duration was determined by the sum of the two cycling efforts duration.Results. - The exercise duration under passive resting condition (408.0 +/- 42.0 s) was longer (p<0.05) than known exercise duration at P-intermediate (T-intermediate = 305.8 +/- 30.5 s) and than exercise duration performed under active resting conditions (T-active = 304.4 +/- 30.7s). However, there was no significant difference between T-intermediate and T-active.Conclusion. - These results demonstrated indirect evidence that the anaerobic work capacity is not replenished while exercising at critical power intensity. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
The break point of the curve of blood lactate vs exercise load has been called anaerobic threshold (AT) and is considered to be an important indicator of endurance exercise capacity in human subjects. There are few studies of AT determination in animals. We describe a protocol for AT determination by the lactate minimum test in rats during swimming exercise. The test is based on the premise that during an incremental exercise test, and after a bout of maximal exercise, blood lactate decreases to a minimum and then increases again. This minimum value indicates the intensity of the AT. Adult male (90 days) Wistar rats adapted to swimming for 2 weeks were used. The initial state of lactic acidosis was obtained by making the animals jump into the water and swim while carrying a load equivalent to 50% of body weight for 6 min (30-s exercise interrupted by a 30-s rest). After a 9-min rest, blood was collected and the incremental swimming test was started. The test consisted of swimming while supporting loads of 4.5, 5.0, 5.5, 6.0 and 7.0% of body weight. Each exercise load lasted 5 min and was followed by a 30-s rest during which blood samples were taken. The blood lactate minimum was determined from a zero-gradient tangent to a spline function fitting the blood lactate vs workload curve. AT was estimated to be 4.95 ± 0.10% of body weight while interpolated blood lactate was 7.17 ± 0.16 mmol/l. These results suggest the application of AT determination in animal studies concerning metabolism during exercise.
Resumo:
The objectives of this study were: a) to determine, in a cross-sectional manner, the effect of aerobic training on the peak oxygen uptake, the intensity at O2peak and the anaerobic threshold (AnT) during running and cycling; and b) to verify if the transference of the training effects are dependent on the analized type of exercise or physiological index. Eleven untrained males (UN), nine endurance cyclists (EC), seven endurance runners (ER), and nine triathletes (TR) were submitted, on separate days, to incremental tests until voluntary exhaustion on a mechanical braked cycle ergometer and on a treadmill. The values of O2peak (ml.kg-1.min-1) obtained in running and cycle ergometer (ER = 68.8 ± 6.3 and 62.0 ± 5.0; EC = 60.5 ± 8.0 and 67.6 ± 7.6; TR = 64.5 ± 4.8 and 61.0 ± 4.1; UN = 43.5 ± 7.0 and 36.7 ± 5.6; respectively) were higher in the group that presented specific training in the modality. The UN group presented the lower values of O2peak, regardless of the type of exercise. This same behavior was observed for the AnT (ml.kg-1.min-1) determined in running and cycle ergometer (ER = 56.8 ± 6.9 and 44.8 ± 5.7; EC = 51.2 ± 5.2 and 57.6 ± 7.1; TR = 56.5 ± 5.1 and 49.0 ± 4.8; UN = 33.2 ± 4.2 and 22.6 ± 3.7; respectively). It can be concluded that the transference of the training effects seems to be only partial, independently of the index (O2peak, IO2peak or AnT) or exercise type (running or cycling). In relation to the indices, the specificity of training seems to be less present in the O2peak than in the IO2peak and the AnT.
Resumo:
The equilibrium point between blood lactate production and removal (La-min(-)) and the individual anaerobic threshold (IAT) protocols have been used to evaluate exercise. During progressive exercise, blood lactate [La-](b), catecholamine and cortisol concentrations, show exponential increases at upper anaerobic threshold intensities. Since these hormones enhance blood glucose concentrations [Glc](b), this study investigated the [Glc] and [La-](b) responses during incremental tests and the possibility of considering the individual glucose threshold (IGT) and glucose minimum;(Glc(min)) in addition to IAT and La-min(-) in evaluating exercise. A group of 15 male endurance runners ran in four tests on the track 3000 m run (v(3km)); IAT and IGT- 8 x 800 m runs at velocities between 84% and 102% of v(3km); La-min(-) and Glc(min) - after lactic acidosis induced by a 500-m sprint, the subjects ran 8 x 800 m at intensities between 87% and 97% of v(3km); endurance test (ET)- 30 min at the velocity of IAT. Capillary blood (25 mu l) was collected for [La-](b) and [Glc](b) measurements. The TAT and IGT were determined by [La-](b) and [Glc](b) kinetics during the second test. The La-min(-) and Glc(min) were determined considering the lowest [La-] and [Glc](b) during the third test. No differences were observed (P < 0.05) and high correlations were obtained between the velocities at IAT [283 (SD 19) and IGT 281 (SD 21)m. min(-1); r = 0.096; P < 0.001] and between La,, [285 (SD 21)] and Glc(min) [287 (SD 20) m. min(-1) = 0.77; P < 0.05]. During ET, the [La-](b) reached 5.0 (SD 1.1) and 5.3 (SD 1.0) mmol 1(-1) at 20 and 30 min, respectively (P > 0.05). We concluded that for these subjects it was possible to evaluate the aerobic capacity by IGT and Glc(min), as well as by IAT and La-min(-).