29 resultados para Amorphous material
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The waste, exaggerated and incorrect disposal of biomass are common practices in modern times where everything is disposable. However the growing concern with the nature and the environment compel man to give nobler destinations for these products through sustainability and recycling of waste. Banana peel is a residual biomass, which is not consumed. It generates tons of waste per week in São Paulo city. This trash is disposed in dumps and landfills, which could be reduced by using it as reinforcement in natural composites. The high density polyethylene (HDPE) is a polymer derived from the ethylene polymerization and is easily recycled. Which makes it a sustainable material. In the present work characteristics of the natural composite composed with banana peel and high-density polyethylene were studied. It was noted that removing the lignin present in the banana peel, the fiber introduces a significant improvement in thermal resistance. The preparation of composite was made with a ratio of 5% and 10% of reinforcement in comparison with polymeric matrix mass. Composites were thermally, mechanically and microscopically characterized. The addition of fiber in the polymer increased the mechanical strength of the composite. The fiber surface treatment with distilled water removed the amorphous material present in the fibers, improving significantly thermal stability and increasing crystallinity of the celullose. The addition of 5% fiber in mass to the polymer increased significantly the tensile strength and elasticity modulus for the composite. With 10% of fiber addiction there were also an improvement when compared with pure HDPE, but when compared with 5% composite the mechanical properties are slightly lower. This may be due to the fiber particle size, which are small and eventually become a hub of tension ... (Complete abstract click electronic access below)
Resumo:
Precursor glass and glass-ceramics with molar composition 2Na2O·1CaO·3SiO2 are studied by infrared, conventional, and microprobe Raman techniques. The Gaussian deconvoluted Raman spectrum of the glass presents bands at 625 and 660 cm-1, attributed to bending vibrations of Si-O-Si bonds, and at 860, 920, 975, and 1030 cm-1, attributed to symmetric stretching vibrations of SiO4 tetrahedra with 4, 3, 2, and 1 nonbridging oxygens, respectively. The Raman microprobe spectrum of a highly crystallized sample presents two narrow and intense bands at about 590 and 980 cm-1, associated with vibrations of SiO4 tetrahedra with two nonbridging oxygens, in agreement with the predicted chain-like structure of crystalline metasilicates. Scanning electron microscopy shows that the crystals distributed in partially crystallized samples have a spherical shape, built up by radially oriented needle-like single crystals. The Raman microprobe spectra of these spherulites show that they still contain residual amorphous material. A comparison of Raman and infrared spectra of amorphous and highly crystallized samples is presented.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The conductivity of poly(p-phenylene sulfide) (PPS) amorphous samples sandwiched between metallic electrodes has been studied as a function of applied voltage, temperature, and electrode material. The voltage (U) dependence of the currents for electric fields within the range 10(3)-10(6) V/cm exhibits exp beta U-1/2 behavior with beta = beta(Schottky) below the glass transition temperature (T-g congruent to 90 degrees C), and beta = beta(Poole-Frenkel) above T-g. Coordinated temperature measurements of de currents with different metallic contacts and thermally stimulated currents (TSC) indicate, however, that the conductivity at T < T-g is consistent with the so-called ''anomalous'' Poole-Frenkel effect rather than the Schottky effect. Consequently, the p-type conductivity in amorphous PPS is proposed to be a bulk-limited process due to ionization of two different types of acceptor centers in the presence of neutral hole traps. (C) 1996 John Wiley & Sons, Inc.
Resumo:
We report on several amorphous compounds based on different metal oxianions with intense photoluminescence at room temperature. These compounds were synthesised by a soft chemical process and deposited on Si (100) by a spin-coating technique. To select these different metal oxianions, a classic concept based on a metal oxide network former is used. We describe a minimum set of requirements to obtain an amorphous metal oxide with photoluminescence emission at room temperature.
Resumo:
Ca0.95Sm0.05TiO3 (CT:Sm) powder was prepared by the polymeric precursor method (PPM). Order-disorder at short and long range has been investigated by means of Raman spectroscopy, X-ray diffraction (XRD), and photoluminescence emission (PL) experimental techniques. The broad PL band and the Sm emission spectrum measured at room temperature indicate the increase of structural order with annealing temperature. The measured PL emission reveals that the PL intensity changes with the degree of disorder in the CT: Sm. The electronic structures were performed by the ab initio periodic method in the DFT level with the hybrid nonlocal B3LYP approximation. Theoretical results are analyzed in terms of DOS, charge densities, and Mulliken charges. Localized levels into the band gap of the CT: Sm material favor the creation of the electron-hole pair, supporting the observed room-temperature PL phenomenon.
Resumo:
This work reports the changes in the optical properties produced by annealing of amorphous GaAs at temperatures smaller than or just sufficient to produce crystallization of the material. The films were grown by the flash evaporation technique on glass substrates at room temperature. Optical and structural changes of our samples were monitored through photothermal deflection spectroscopy, optical transmittance and reflectance and X-ray diffraction (XRD). The structural results from XRD detected no crystallization of the films for temperatures up to 240 degreesC. We have observed consistent changes in the optical gap and Urbach energy of the annealed film. The optical gap increases with increasing annealing temperature from 1.17 to 1.32 eV. The Urbach energy decrease from 120 meV (as-grown film) to 105 meV (anneal at 200 degreesC). We propose that these changes are due to a diminution of the tail state defects and/or the relaxation of strained bonds. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Indium-tin oxide nanostructures were deposited by excimer laser ablation in a nitrogen atmosphere using catalyst-free oxidized silicon substrates at 500 degrees C. Up to 1 mbar, nanowires grew by the vapor-liquid-solid (VLS) mechanism, with the amount of liquid material decreasing as the deposition pressure increased. The nanowires present the single-crystalline cubic bixbyite structure, oriented < 100 >. For the highest pressure used, pyramids were formed and no sign of liquid material could be observed, indicating that these structures grew by a vapor-solid mechanism. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the present paper, we discuss a generalized theory of electrical characteristics for amorphous semiconductor (or insulator) Schottky barriers, considering: (i) surface states, (ii) doping impurity states at a single energy level and (iii) energetically distributed bulk impurity states. We also consider a thin oxide layer (≈10 Å) between metal and semiconductor. We develop current versus applied potential characteristics considering the variation of the Fermi level very close to contact inside the semiconductor and decrease in barrier height due to the image force effect as well as potential fall on the oxide layer. Finally, we discuss the importance of each parameter, i.e. surface states, distributed impurity states, doping impurity states, thickness of oxide layer etc. on the log I versus applied potential characteristics. The present theory is also applicable for intimate contact, i.e. metal-semiconductor contact, crystalline material structures or for Schottky barriers in insulators or polymers.
Resumo:
The dependence of the optical absorption edge on the deposition crucible temperature is used to investigate the electronic states in As-rich a-GaAs flash evaporated films. The Urbach energy parameter, determined from photothermal deflection spectroscopy (PDS), presents large correlated variations with crucible temperature. The optical and electrical results are consistent with the As under coordinated sites being the more important defect in the material. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to analyze the anticaries potential of pit and fissure sealants containing amorphous calcium phosphate (ACP) by synchrotron microtomography. Bovine enamel blocks (4x4 mm; n=50) were selected through surface hardness (Knoop) analysis. Slabs were obtained through cross-sections taken 1 mm from the border of the enamel. Five indentations, spaced 100 mu m apart, were made 300 mu m from the border. Ten specimens were prepared for each tested material (Ultraseal XT plus TM, Aegis, Embrace, Vitremer and Experimental Sealant). The materials were randomly attached to the sectioned surfaces of the enamel blocks and fixed with sticky wax. The specimens were submitted to pH cycling. After that, the surface hardness (SH1) was determined, and the blocks were submitted to synchrotron microcomputed tomography analysis to calculate the mineral concentration (Delta g(HAp) cm(-3)) at different areas of the enamel. The comparison between the SH1 and DgHAp cm(-3) showed a correlation for all groups (r=0.840; p<0.001). The fluoride groups presented positive values of DgHAp cm(-3), indicating a mineral gain that was observed mainly in the outer part of the enamel. The ACP showed mineral loss in the outer enamel compared with fluoride groups, although it inhibited the demineralization in the deeper areas of enamel. The combination of two remineralizing agents (fluoride and ACP) was highly effective in preventing demineralization.