124 resultados para Alginate Bead


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The levan is a biopolymer of great importance to the food industry since it is capable of defining and modifying the structure of one food, acting as stabilizer, thickener, gelling agent and being largely responsible for the texture of processed foods. The levan production by bacterial cell immobilization may potentialize the results of these studies, having advantages such as: high cell concentrations inside the reactor, increase the substrate absorption rate, improve the performance and reduce the risk of microbial contamination. Thus, this study aims to evaluate the levan production by immobilized Zymomonas mobilis in hybrid system of alginate/polyvinyl alcohol (PVA) when submitted to different sucrose concentrations (5, 10, 25 and 30%), pH (5.7 and 7.0) and incubation temperature of 30C for 12, 18 and 24 h. The results showed that the best levan production rate was 18.66 g/L at 30% sucrose concentration, with productivity 1.55 g/L/h at pH 7.0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biochar is the solid by-product of biomass pyrolysis. It is a promising soil conditioner and can be a material with high aggregate economic value, since its performance can improve plant’s nutrient utilization and reduce the usage of conventional fertilizers. Biochar can be used in the formulation of new types of fertilizers as polymeric microbeads. These microbeads can be enriched with biochar and nutrients in its matrix to form fertilizers of slow release of nutrients. Thus, as a promising agricultural material, it is important to assess the environmental hazards caused by the implementation of these microbeads. In this context, seeds were sown in a soil-less Petri dish with microbeads produced with biochar from sugarcane enriched with or without phosphate. The seeds germination and its vitality were evaluated by the first germination count (FGC) and the germination speed index (GSI). The short-term effects showed that the microbeads, in general, assessed by the means of FGC, GSI and mass gain showed the best performance, suggesting that the environment created by these materials provided the best chemical and physical interaction with the embryonic axes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, articaine hydrochloride (ATC) is a local anesthetic widely used in dental procedures, but its side effects include paresthesia and nerve injury. Alginate/chitosan nanoparticles (AG/CSnano) can be used as carrier for drugs, overcoming the problems. The aim of this work was to evaluate the factors (Calcium/alginate [Ca2+:AG] and Chitosan/alginate [CS:AG] mass ratios) influence on the average size, polydispersity index, zeta potential and encapsulation efficiency of ATC. AG/CSnano containing ATC were prepared by ionic pregelation method. A three-level factorial design was carried out and the factors varied were Ca2+/AG mass ratio and CS/AG mass ratio. There were obtained nanoparticles with size range of 340–550 nm and polydispersity index between 0.2 and 0.5, zeta potential range –19 and –22 mV and encapsulation efficiency of ATC in AG/Csnano between 22 and 45%. According to the results, the average size, polydispersity index and encapsulation efficiency were significantly affected to the variation of Ca2+/AG and CS/AG mass ratio, but the zeta potential didn't change significantly with factor variations. The factorial design showed it was possible to identify formulations that presented better results for the parameters measured. The factor chosen for the suitable formulations was the encapsulation efficiency. Through this parameter, one formulation was chosen with highest encapsulation efficiency of ATC and presented good colloidal stability parameters aiming future clinical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the efficacy of chitosan-alginate membrane to accelerate wound healing in experimental cutaneous wounds. Two wounds were performed in Wistar rats by punching (1.5 cm diameter), treated with membranes moistened with saline solution (CAM group) or with saline only (SL group). After 2, 7, 14, and 21 days of surgery, five rats of each group were euthanized and reepithelialization was evaluated. The wounds/scars were harvested for histological, flow cytometry, neutrophil infiltrate, and hydroxyproline analysis. CAM group presented higher inflammatory cells recruitment as compared to SL group on 2nd day. On the 7th day, CAM group showed higher CD11b+ level and lower of neutrophils than SL group. The CAM group presented higher CD4+ cells influx than SL group on 2nd day, but it decreased during the follow up and became lower on 14th and 21st days. Higher fibroplasia was noticed on days 7 and 14 as well as higher collagenesis on 21st in the CAM group in comparison to SL group. CAM group showed faster reepithelialization on 7th day than SL group, although similar in other days. In conclusion, chitosan-alginate membrane modulated the inflammatory phase, stimulated fibroplasia and collagenesis, accelerating wound healing process in rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The industry's interest in having a greater control of the deformations caused by welding is due to the geometric and dimensional tolerances been more and more precise in the project specifications, motivating the manufacturing engineering to develop stable processes and to ensure routine production. Aiming at it, the main goal of this present work is to analyze how much routine situations used in automatic aluminum welding can influence on the angular deformations of this material. Using the alloy AA 5052 H34, and the automatic welding in pulsed GMAW process, three types of weaving were applied throughout the length of the weld, in butt joints assembled without groove and with 60 degrees single-V-groove, arranged transversely as well as longitudinally to the rolling direction of the plate. The measurement of the deformations was made by a three-dimensional equipment, before and after the welding, in three distinct regions in the specimens. The profile of the weld bead was the main factor for the different types of deformations found, as revealed by macrographical analysis. The 60 degrees single-V-groove had higher amplitudes of deformations as the joint without groove. The torch oscillation wasn't a variable of statistically significant influence on this amplitudes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to analyze the effect of successive TIG (tungsten inert gas) welding repairs on the reverse bending fatigue strength of AISI 4130 steel, which is widely used in components critical to the flight-safety. In order to simulate the abrupt maneuvers, wind bursts, motor vibration and helixes efforts, which generate cyclic bending loadings at the welded joints of a specific aircraft component called motor cradle, experimental reverse bending fatigue tests were carried out on specimens made from hot-rolled steel plate, 1.10 mm (0.043 in) thick, by mean of a SCHENK PWS equipment, with load ratio R = -1, under constant amplitude, at 30 Hz frequency and room temperature. It was observed that the bending fatigue strength decreases after the TIG (Tungsten Inert Gas) welding process application on AISI 4130 steel, with subsequent decrease due to re-welding sequence as well. Microstructural analyses and microhardness measurements on the base material, heat-affected zone (HAZ) and weld metal, as well as the effects of the weld bead geometry on the obtained results, have complemented this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJETIVOS: O presente estudo teve como objetivo cultivar condrócitos retirados da articulação do joelho de coelhos encapsulados em hidrogel de alginato (HA) e caracterizar a produção de matriz extracelular (ECM). MÉTODOS: A cartilagem articular foi removida do joelho de coelhos, com três a seis meses, fragmentada em pedaços de 1mm e submetida à digestão enzimática. Uma concentração de 1x106 céls/mL foram ressuspensas em uma solução de alginato de sódio a 1,5% (w/v), em seguida fez-se o processo de gelatinização em CaCl2 (102 mM), permitindo a formação do HA e cultivo em meio DMEM-F12 durante quatro semanas. A distribuição das células e a ECM foram acessadas através das secções histológicas coradas com e azul de toluidina hematoxilina e eosina (HE). RESULTADOS: Houve um aumento no número e na viabilidade dos condrócitos durante as quatro semanas de cultura. Através das análises histológicas dos HAs corados com azul de toluidina e HE foi possível observar a distribuição definida dos condrócitos no hidrogel, assemelhando-se a grupos isógenos e formação de matriz territorial. CONCLUSÃO: Este estudo demonstrou a eficiência do HA como arcabouço para ser usado na cultura de condrócitos, constituindo uma alternativa no reparo de lesões na cartilagem articular.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the prevalence of caries has decreased dramatically over the past decades, it has become a polarised disease, with most of subjects presenting low caries levels and few individuals accounting for most of the caries affected surfaces. Thus it become evident for the need of clinical approaches directed at these high-risk patients, in order to overcome problems related to compliance and low attendance at dental care centres. Slow-release fluoride devices were developed based on the inverse relationship existing between intra-oral fluoride levels and dental caries experience. The two main types of slow-release devices - copolymer membrane type and glass bead - are addressed in the present review. A substantial number of studies have demonstrated that these devices are effective in raising intra-oral F concentrations at levels able to reduce enamel solubility, resulting in a caries-protective effect. Studies in animals and humans demonstrated that the use of these devices was able to also protect the occlusal surfaces, not normally protected by conventional fluoride regimens. However, retention rates have been shown to be the main problem related to these devices and still requires further improvements. Although the results of these studies are very promising, further randomised clinical trials are needed in order to validate the use of these devices in clinical practice. The concept of continuously providing low levels of intra-oral fluoride has great potential for caries prevention in high caries-risk groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)