36 resultados para Air Diffusion Layer
Resumo:
Kinetics of osmotic dehydration (OD) and effects of sucrose impregnation on thermal air-drying of pumpkin slices were investigated. A simplified model based on the solution of Fick's Law was used to estimate effective diffusion coefficients during OD and air-drying. In order to take into account shrinkage, average and variable thicknesses were considered. Pumpkin slices were dehydrated in sucrose solutions (40%, 50% and 60%, w/w, 27 degrees C. The effective water diffusion coefficients were higher than the sucrose, and low diffusivity dependence with solution concentration was observed. Samples non-treated and pre-treated in 60% osmotic solutions during one hour were dried in a hot-air-dryer at 50 and 70 degrees C (2 m/s) until equilibrium was achieved. Pre-treatment enhanced mass transfer during air-drying. Great volume reduction was observed in pre and non-treated dried samples. Using variable thickness in the model diminished the relative deviations between predicted and experimental OD and drying data. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Studies of cooking-generated NO2 effects are rare in occupational epidemiology. In the present study, we evaluated the lung function of professional cooks exposed to NO2 in hospital kitchens. We performed spirometry in 37 cooks working in four hospital kitchens and estimated the predicted FVC, FEV1 and FEF25-75, based on age, sex, race, weight, and height, according to Knudson standards. NO2 measurements were obtained for 4 consecutive days during 4 different periods at 20-day intervals in each kitchen. Measurements were performed inside and outside the kitchens, simultaneously using Palm diffusion tubes. A time/exposure indicator was defined as representative of the cumulative exposure of each cook. No statistically significant effect of NO2 exposure on FVC was found. Each year of work as a cook corresponded to a decrease in predicted FEV1 of 2.5% (P = 0.046) for the group as a whole. When smoking status and asthma were included in the analysis the effect of time/exposure decreased about 10% and lost statistical significance. on predicted FEF25-75, a decrease of 3.5% (P = 0.035) was observed for the same group and the inclusion of controllers for smoking status and asthma did not affect the effects of time/exposure on pulmonary function parameter. After a 10-year period of work as cooks the participants of the study may present decreases in both predicted FEV1 and FEF25-75 that can reach 20 and 30%, respectively. The present study showed small but statistically significant adverse effects of gas stove exposure on the lung function of professional cooks.
Resumo:
The dynamic scale theory and fractal concepts are employed in the characterization of surface morphological properties of layer-by-layer (LBL) films from poly(o-methoxyaniline) (POMA) alternated with poly(vinyl sulfonic acid) (PVS). The fractal dimensions are found to depend on the procedures to fabricate the POMA/PVS multilayers, particularly with regard to the drying procedures. LBL films obtained via drying in ambient air show a more homogeneous surface, compared to films dried under vacuum or a flow of nitrogen, due to a uniform rearrangement of polymer molecules during solvent evaporation.
Resumo:
Molecular-level interactions are found to bind iron tetrasulfonated phthalocyanine (FeTsPc) and the polyelectrolyte poly(allylamine hydrochloride) (PAH) in electroactive layer-by-layer (LBL) films. These interactions have been identified by comparing Fourier transform infrared (FTIR) and Raman spectroscopy data from bulk samples of FeTsPc and PAH with those from FeTsPc/PAH LBL films. of particular importance were the SO3- -NH3 interactions that we believe to bind PAH and FeTsPc and the interactions between unprotonated amine groups of PAH and the coordinating metal of the phthalocyanine. The multilayer formation was monitored via UV-vis spectroscopy by measuring the increase in the Q band of FeTsPc at 676 nm. Film thickness estimated with profilometry was ca. I I Angstrom per bilayer for films adsorbed on glass. Reflection absorption infrared spectroscopy (RAIRS) revealed an anisotropy in the LBL film adsorbed on gold with FeTsPc molecules oriented perpendicularly to the substrate plane. Cyclic voltammograms showed reproducible pairs of oxidation-reduction peaks at 1.07 and 0.81 V, respectively, for a 50-bilayer PAH/FeTsPc film at 50 mV/s (vs Ag/Ag+). The peak shape and current dependence on the scan rate suggest that the process is a diffusion controlled charge transport. In the presence of dopamine, the electroactivity of FeTsPc/PAH LBL films vanishes due to a passivation effect. Dopamine activity is not detected either because the interaction between Fe atoms and NH2 groups prevents dopamine molecules from coordinating with the Fe atoms.
Resumo:
We report on the use of dynamic scale theory and fractal analyses in the Study of distinct growth stages of layer-by-layer (LBL) films of poly(allylamine hydrochloride) (PAH) and a side-chain-substituted azobenzene copolymer (Ma-co-DR13). The LBL films were adsorbed oil glass substrates and characterized with atomic force microscopy with the Ma-co-DR13 at the top layer. The ganular morphology exhibited by the films allowed the observation of the growth process inside and outside the grains. The growth outside the grains was found to follow the Kardar-Parisi-Zhang model, with fractal dimensions of ca. 2.6. One could expect that inside the grains the morphology would be close to a Euclidian surface with fractal dimension of ca. 2 for any growth stage. The latter, however, was observed only for thicker films containing more than 10 bilayers. For thinner films the morphology was well described by a self-affine fractal. Such dependence of the growth behavior with the film thickness is associated with a more complete coverage of adsorption sites in thicker films due to diffusion of polymer molecules. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The surface corrosion process associated with the hydrolysis of fluorozirconate glass, Z-BLAN (53ZrF(4), 20BaF(2), 20NaF, 4LaF(2), 3AlF(3)), and the corrosion protection efficiency of a nanocrystalline transparent SnO2 layer were investigated by X-ray photoelectron spectroscopy. The tin oxide film was deposited by the sol-gel dip-coating process in the presence of Tiron(R) as particle surface modifier agent. The chemical bonding structure and composition of the surface region of coated and non-coated ZBLAN were studied before water contact and after different immersion periods (5-30 min). In contrast to the effects occurring for non-coated glass, where the surface undergoes a rapid selective dissolution of the most soluble species inducing the formation of a new surface phase consisting of stable zirconium oxyfluoride, barium fluoride and lanthanum fluoride species, the results for the SnO2-coated glass showed that the hydrolytic attack induces a filling of the film nanopores by dissolved glass material and the formation of tin oxylluoride and zirconium oxyfluoride species. This process results in a modified film, which acts as a hermetic diffusion barrier protecting efficiently the glass surface. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this investigation, the air drying characteristics of fresh and osmotically pre-treated pineapple slices in a tray dryer were studied under different operating conditions. The air velocity varied from 1.5 to 2.5 m/s and the air temperature from 40 to 70 degreesC. The analytical solution of the second Fick's law for an infinite slab was used to calculate effective diffusion coefficients and their temperature dependence could be well represented by an Arrhenius-type equation. Comparison of the results showed that the diffusion coefficients were lower for the pre-treated fruit. By means of automatic control, it was possible to obtain drying curves under conditions of constant product temperature, which showed to be an alternative to reduce the drying time of pineapple slices.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The transfer formulas are used to compute hourly values of sensible and latent heat exchanges for the period July 29 to July 31, 1974. Also, values of eddy shearing stress at the sea surface, Bowen's ratio and dissipation of kinetic energy are computed. The data used cover part of the GATE period for station 20 occupied by the Brazilian Naval Ship R/V Sirius in the Equatorial Atlantic (0730 N 4000 W). The variations in the computed values are studied in relation to rainfall and the synoptic situation. © 1980 D. Reidel Publishing Co.
Resumo:
Purpose: To evaluate the influence of three different adhesives, each used as an intermediary layer, on microleakage of sealants applied under condition of salivary contamination. Materials and Methods: Six different experimental conditions were compared, 3 with adhesives and 3 without. After prophylaxis and acid etching of enamel, salivary contamination was placed for 10 s. In Group SC the sealant was applied after saliva without bonding agent and then light-cured. In Group SCA, after saliva, the surface was air dried, and then the sealant was applied and cured. In Groups ScB, SB and PB, a bonding agent (Scotchbond Dual Cure/3M, Single Bond/3M and Prime & Bond 2.1/Dentsply, respectively) was applied after the saliva and prior to the sealant application and curing. After storage in distilled water at 37°C for 24 hrs, the teeth were submitted to 500 thermal cycles (5°C and 55°C), and silver nitrate was used as a leakage tracer. Leakage data were collected on cross sections as percentage of total enamel-sealant interface length. Representative samples were evaluated under SEM. Results: Sealants placed on contaminated enamel with no bonding agent showed extensive microleakage (94.27% in SC; 42.65% in SCA). The SEM revealed gaps as wide as 20 μm in areas where silver nitrate leakage could be visualized. In contrast, all bonding agent groups showed leakage less than 6.9%. Placement of sealant with a dentin-bonding agent on contaminated enamel significantly reduced microleakage (P< 0.0001). The use of a bonding agent as an intermediary layer between enamel and sealant significantly reduced saliva's effect on sealant microleakage.
Resumo:
The protection efficiency against water corrosion of fluorozirconate glass, ZBLAN, dip-coated by nanocrystalline tin oxide film containing the organic molecule Tiron® was investigated by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The chemical bonding structure of the surface region and morphology were studied before and after two water exposure periods of 5 and 30 min. The results of the analysis for the as-grown sample revealed a SnO1.6 phase containing carbon and sulfur, related to Tiron®, and traces of elements related to ZBLAN (Zr, F, Ba). This fact and the clear evidence of the presence of tin oxifluoride specie (SnOxF y) indicates a diffusion of the glass components into the porous coating. After water exposure, the increase of the oxygen concentration accompanied by a strong increase of Zr, F, Ba and Na content is interpreted as filling of the nanopores of the film by glass compounds. The formation of a compact protective layer is supported by the morphological changes observed by AFM. © 2005 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work is to study the local impact on the upper troposphere/lower stratosphere air composition of an extreme deep convective system. For this purpose, we performed a simulation of a convective cluster composed of many individual deep convective cells that occurred near Bauru (Brazil). The simulation is performed using the 3-D mesoscale model RAMS coupled on-line with a chemistry model. The comparisons with meteorological measurements show that the model produces meteorological fields generally consistent with the observations. The present paper (part I) is devoted to the analysis of the ozone precursors (CO, NO x and non-methane volatile organic compounds) and HO x in the UTLS. The simulation results show that the distribution of CO with altitude is closely related to the upward convective motions and consecutive outflow at the top of the convective cells leading to a bulge of CO between 7 km altitude and the tropopause (around 17km altitude). The model results for CO are consistent with satellite-borne measurements at 700 hPa. The simulation also indicates enhanced amounts of NO x up to 2 ppbv in the 7-17 km altitude layer mainly produced by the lightning associated with the intense convective activity. For insoluble non-methane volatile organic compounds, the convective activity tends to significantly increase their amount in the 7-17km layer by dynamical effects. During daytime in the presence of lightning NO x, this bulge is largely reduced in the upper part of the layer for reactive species (e.g. isoprene, ethene) because of their reactions with OH that is increased on average during daytime. Lightning NO x also impacts on the oxydizing capacity of the upper troposphere by reducing on average HO x, HO 2, H 2O 2 and organic hydroperoxides. During the simulation time, the impact of convection on the air composition of the lower stratosphere is negligible for all ozone precursors although several of the simulated convective cells nearly reach the tropopause. There is no significant transport from the upper troposphere to the lower stratosphere, the isentropic barrier not being crossed by convection. The impact of the increase of ozone precursors and HO x in the upper troposphere on the ozone budget in the LS is discussed in part II of this series of papers.
Resumo:
The promotion of good indoor air quality in schools is of particular public concern for two main reasons: (1) school-age children spend at least 30% of their time inside classrooms and (2) indoor air quality in urban areas is substantially influenced by the outdoor pollutants, exposing tenants to potentially toxic substances. Two schools in Curitiba, Brazil, were selected to characterize the gaseous compounds indoor and outdoor of the classrooms. The concentrations of benzene, toluene, ethylbenzene, and the isomers xylenes (BTEX); NO2; SO2; O3; acetic acid (HAc); and formic acid (HFor) were assessed using passive diffusion tubes. BTEX were analyzed by gas chromatography-ion trap mass spectrometry and other collected gasses by ion chromatography. The concentration of NO2 varied between 9.5 and 23 μg m-3, whereas SO2 showed an interval from 0.1 to 4.8 μg m-3. Within the schools, BTEX concentrations were predominant. Formic and acetic acids inside the classrooms revealed intermediate concentrations of 1.5 μg m-3 and 1.2 μg m-3, respectively. © Springer Science + Business Media B.V. 2009.
Resumo:
Brazil has an important role in the biomass burning aerosol activity. During the Dry Season (June-September) of 2009 an aerosol profiling campaign was carried out using a backscattering and Raman lidar system in Rio Claro-SP, Brazil (22°23'S and 47°32'W). The main goal of this campaign was to observe the biomass burning aerosol load due to sugarcane crops and also study the air dispersion conditions, planetary boundary and mixed layer daily evolution. In this paper we aim to present the preliminary results of the influence of this type of aerosol over the city of Rio Claro-SP, Brazil and one case study to evaluate the aerosol profile in a biomass burning episode that occurred in July, 2009. On July 15 an intense burning was observed about 300 m away from the lidar location. Throughout the measurements it was observed that the plumes reached up to 900 m, and that there was a time gap between the plumes. The gas analyzers showed a strong influence of this burning as it was noticed in the measurements of CO, NO x and nephelometer, whereas the PM10 did not have due to this burning, possibly because the particulate was deposited further from the emission source, not being detected by the equipment. © Sociedad Española de Óptica.