89 resultados para Ab initio calculation
Resumo:
It is demonstrated that measurements of photon asymmetry in the γn → K-K+n reaction, can most likely determine the parity of the newly discovered Θ+ pentaquark. We predict that if the parity of Θ+ is positive, the photon asymmetry is significantly positive; if the parity is negative, the photon asymmetry is significantly negative. If the background contribution is large, the photon asymmetry may become very small in magnitude, thereby making it difficult to distinguish between the positive and negative parity results. However, even in this case, a combined analysis of the (K+n) invariant mass distribution and photon asymmetry should allow a determination of the parity of Θ+. © 2004 Published by Elsevier B.V.
Resumo:
Synopsis: Objectives: In this research, an experimental and theoretical study was conducted to design a photodegradation mechanism of the amino acid tryptophan (Trp) in hair fibres. Methods: For the experimental research, Caucasian hair fibres were exposed to several different solar radiation simulation periods. Then, Trp and its photoproducts (N-formylkynurenine and kynurenine) were assayed by excitation and emission spectroscopic analysis. Results: For the theoretical study, reactions involved in the photodegradation of Trp were evaluated by high-level quantum mechanical calculations in a density functional theory (DFT) framework which indicate a probable Trp degradation mechanism with a minimum expended energy pathway. Conclusion: The biochemistry concerning these reactions is essentially important for a biological system where the degradation of Trp occurs. © 2013 John Wiley & Sons Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Intramolecular proton transfer from oxygen to nitrogen atoms in the alpha-alanine amino acid has been studied by ab initio methods at the HF/6-31G*, HF/6-31 ++ G** and MP2/6-31 ++ G** levels of calculation including the solvent effects by means of self-consistent reaction field theory. An analysis of the results based on the natural bond orbital charges shows that the transition structure presents an imbalance in the sense that the charge shift lags behind the proton transfer and that the bond formation is always in advance with respect to the bond cleavage. All calculation levels show that the barrier height associated with the conformational change on alpha-alanine is larger than the proton transfer process. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
The zwitterionic (Z) form, neutral (N) form and transition structure (TS) connecting N to Z, have been studied at the B3LYP/6-31++G** level of calculation by using the SCRF methodology. The intramolecular proton transfer from oxygen to nitrogen atoms of alpha -alanine and vibrational spectrum were analyzed in the different environments employed: acetonitrile, ethanol, carbon tetrachloride and gas phase. The Z species is a stationary point in acetonitrile and ethanol, but not in carbon tetrachloride and gas phase media. The geometry of N, Z and TS was similar in acetonitrile and ethanol. The vibrational spectrum of Z was similar in the two solvents studied. (C) 2001 Elsevier B.V. B.V. All lights reserved.
Resumo:
Using the hyperspherical adiabatic approach in a coupled-channel calculation, we present precise binding energies of excitons trapped by impurity donors in semiconductors within the effective-mass approximation. Energies for such three-body systems are presented as a function of the relative electron-hole mass sigma in the range 1 less than or equal to1/sigma less than or equal to6, where the Born-Oppenheimer approach is not efficiently applicable. The hyperspherical approach leads to precise energies using the intuitive picture of potential curves and nonadiabatic couplings in an ab initio procedure. We also present an estimation for a critical value of sigma (sigma (crit)) for which no bound state can be found. Comparisons are given with results of prior work by other authors.
Resumo:
Theoretical data using ab initio perturbed ion calculation were compared with ferroelectric and piezoelectric experimental data of strontium doped PZT. Various concentrations of SrO in PZT at constant temperature and sintering time were carried out. Experimental results, such as the remanent polarization, P-R of 6.9-8.9 muC/Cm-2, the coercive field, E-C of 6.6-7.8 kVcm, and the planar coupling factor, Kp of 0.45-0.53, were compared with the energy of Zr4+ and Ti4+ ion dislocation and the lattice interaction energy which show that strontium increment in PZT alter the energies and increase the values of piezoelectric and ferroelectric variables. Calculations of lattice energy of the rhombohedral phase show that a phase non-stability is coincident with increasing experimental values of the P-R, E-C and Kp. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Using the Rietveld method, phases of ceria-doped zirconia, calcined at temperatures of 600 and 900 degrees C, were quantitatively analysed for different concentrations of ceria. The results show that the stabilization of zirconia depends on the dopant concentration and calcination temperature. Moreover, the theoretical calculation using the ab initio Hartree-Fock-Roothaan method indicates that the most stable phases for ceria-stabilized zirconia are cubic or tetragonal, in accordance with experimental results. (C) 1999 Kluwer Academic Publishers.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The structural and electronic properties of bulk and both oxidized and reduced SnO2(110) surfaces as well as the adsorption process of O-2 on the reduced surface have been investigated by periodic DFT calculations at B3LYP level. The lattice parameters, charge distribution, density of states and band structure are reported for the bulk and surfaces. Surface relaxation effects have been explicitly taken into account by optimizing slab models of nine and seven atomic layers representing the oxidized and reduced surfaces, respectively. The conductivity behavior of the reduced SnO2(110) surface is explained by a distribution of the electrons in the electronic states in the band gap induced by oxygen vacancies. Three types of adsorption approaches of O-2 on the four-fold tin at the reduced SuO(2)(110) surface have been considered. The most exothermic channel corresponds to the adsorption of O-2 parallel to the surface and to the four-fold tin row, and it is believed to be associated with the formation of a peroxo O-2(2-) species. The chemisorption of O-2 on reduced SnO2(110) surface causes a significant depopulation of states along the band gap and it is shown to trap the electrons in the chemisorbed complex producing an electron-depleted space-charge layer in the inner surface region of the material in agreement with some experimental evidences. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Very intense visible green photoluminescence (PL) was observed at room temperature in structurally ordered-disordered BaZrO3 powders. Ab initio calculations, ultraviolet-visible absorption spectroscopy, electron paramagnetic resonance, and PL were performed. Theoretical and experimental results showed that local defects in the cubic structure caused by [ZrO5 center dot V-O(z)] complex clusters, where V-O(z) = V-O(x), V-O(center dot), and V-O(center dot center dot), play an important role in the formation of hole-electron pairs, giving rise to a charge gradient in the structure which is responsible for PL emission. (c) 2008 American Institute of Physics.