110 resultados para AMAZON RIVER
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The main structural and geomorphological features along the Amazon River are closely associated with Mesozoic and Cenozoic tectonic events. The Mesozoic tectonic setting is characterised by the Amazonas and Marajó Basins, two distinct extensional segments. The Amazonas Basin is formed by NNE-SSW normal faults, which control the emplacement of dolerite dykes and deposition of the sedimentary pile. In the more intense tectonic phase (mid-Late Cretaceous), the depocentres were filled with fluvial sequences associated with axial drainage systems, which diverge from the Lower Tapajós Arch. During the next subsidence phase, probably in the Early Tertiary, and under low rate extension, much of the drainage systems reversed, directing the paleo-Amazon River to flow eastwards. The Marajó Basin encompasses NW-SE normal faults and NE-SW strike-slip faults, with the latter running almost parallel to the extensional axes. The normal faults controlled the deposition of thick rift and post-rift sequences and the emplacement of dolerite dykes. During the evolution of the basin, the shoulder (Gurupá Arch) became distinct, having been modelled by drainage systems strongly controlled by the trend of the strike-slip faults. The Arari Lineament, which marks the northwest boundary of the Marajó Basin, has been working as a linkage corridor between the paleo and modern Amazon River with the Atlantic Ocean. The neotectonic evolution since the Miocene comprises two sets of structural and geomorphological features. The older set (Miocene-Pliocene) encompasses two NE-trending transpressive domains and one NW-trending transtensive domain, which are linked to E-W and NE-SW right-lateral strike-slip systems. The transpressive domains display aligned hills controlled by reverse faults and folds, and are separated by large plains associated with pull-apart basins along clockwise strike-slip systems (e.g. Tupinambarana Lineament). Many changes were introduced in the landscape by the transpressive and transtensive structures, such as the blockage of major rivers, which evolved to river-lakes, transgression of the sea over a large area in the Marajó region, and uplift of long and narrow blocks that are oblique to the trend of the main channel. The younger set (Pliocene-Holocene) refers to two triple-arm systems of rift/rift/strike-slip and strike-slip/strike-slip/rift types, and two large transtensive segments, which have controlled the orientation of the modern drainage patterns. © 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The occurrence of morphotypes in Macrobrachium amazonicum males was investigated. Prawns aged 4 to 24 months were taken from 10 aquaculture earthen ponds. Color and spination of right second cheliped were analyzed under a stereomicroscope. Post-orbital and carapace length were measured as well as the length of the cheliped and all limb joints on the right second pereiopods. Four distinct morphotypes were identified: Translucent Claw (TC), Cinnamon Claw (CC), Green Claw 1 (GC1) and Green Claw 2 (GC2). They differed in cheliped morphology and some morphometric relationships. Chelipeds were translucent in TC prawns while in CC they were generally cinnamon-color. Both showed a few spines and some low prominences similar to very small tubercles. GC1 and GC2 showed long moss green chelipeds provided with long and robust spines. However, in GC2, cheliped length was always greater than post-orbital length and the angles of spines on the carpus and propodus were more open, ranging from 51°to 92°, while, in GC1 it varies from 34°to 65°. Cheliped length, the cheliped length/post-orbital length ratio and the spine angle were significantly different among the four morphotypes. A description for the identification of each group is provided and the development of M. amazonicum males is discussed. Each morphotype may play a different role in the population and in the environment in which it lives. Therefore, the identification of morphotypes is advisable for future researches on the biology and culture of M. amazonicum. © 2004 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to evaluate the effect of stocking ponds using graded and ungraded juveniles and performing drained and combined harvesting on the production of M. amazonicum. A randomized completed-blocks design with 4 treatments (farming strategies) and 3 replicates was used. Treatments were: Upper size-graded juveniles, Lower size-graded juveniles, Ungraded juveniles, all with total drained harvesting, and Combined Harvesting (ungraded juveniles). Twelve earthen ponds were stocked at 40 juveniles.m -2, according to the treatment. After 3.5 months prawns were completely harvested. Lower size-graded prawns showed smaller average weight (3.37 ± 0.25 g) than upper size-graded (4.03 ± 0.40 g) and ungraded ones (3.80 ± 0.16 g). Survival percentage varied from 68 ± 9 to 76 ± 10, productivity was slightly higher than 1,000 kg.ha -1 and apparent feed conversion rate varied from 3.0 ± 0.7 to 3.7 ± 1.3. These parameters did not differ among the farming strategies. The best strategy for short term grow-out M. amazonicum in earthen ponds is stocking ungraded juveniles and performing total harvesting by draining ponds at the end of rearing cycle. Grading juveniles before stocking and selective-harvesting managements are not advantageous because they increase costs and do not improve any production parameter.
Resumo:
Studies to determine suitable levels of intensification are essential for developing sustainable aquaculture. The objective of this study was to evaluate the quality of effluents discharged from ponds stocked with 10 (D10), 20 (D20), 40 (D40), and 80 (D80) postlarvae of Macrobrachium amazonicum/m2. Intake and effluent water samples were taken throughout a 5.5-mo grow-out cycle. In that study, twelve 0.01-ha earthen ponds were stocked postlarvae with 0.01g. Average water exchange rate was 15%/d; water was discharged from the bottom of the ponds. Prawns were fed a commercial feed with 38% crude protein according to their biomass (3-10%) and the concentration of dissolved oxygen (DO). In our research, temperature, turbidity, total suspended solids, conductivity, DO, pH, biochemical oxygen demand (BOD), chemical oxygen demand (COD), N-ammonia, N-nitrite, N-nitrate, N-Kjeldahl nitrogen, total phosphorus, and soluble orthophosphate were measured every 15d throughout the experiment in the early morning (0630 to 0730h). Turbidity was lower in D10 than in D20 and D40 and total phosphorus was higher in D80 than in D10 and D20. An analysis of principal components comparing treatments and intake water showed three groups: intake, D10 and a cluster of D20, D40, and D80. On the basis of the water characteristics found in our study it appears that the farming of M. amazonicum is likely to have a low environmental impact, at least up to a stocking density of 80prawns/m2. © by the World Aquaculture Society 2013.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The Amazon River prawn Macrobrachium amazonicum is endemic to tropical South America and is being intensively exploited by artisanal fisheries in Brazil. Limited information is available about the nutritional requirements of M. amazonicum, although the production of this species is now technically feasible. The digestive process in this species is still unclear and investigation into the digestive cells of its hepatopancreatic epithelium is required. Thus, the hepatopancreas from 15 specimens were fixed in Karnovsky Solution and processed for Transmission Electron Microscopy. Our results indicate that E cells are located at the distal portion of the hepatopancreatic tubule and are involved in mitotic activity. The cylindrical R cells are sparse and are only found in the proximal portion of the hepatopancreatic tubule. According to its ultrastructural characteristics, this cell is involved in pinocytosis. M cells are generally found near the R cells. The F cells are scattered throughout the length of the hepatopancreatic tubules, and B cells are observed mainly in the proximal and middle regions. F cells and B cells are likely related to, respectively, the synthesis of enzymes and the intracelular digestion. R- and M cells are probably related to material storage. Thus, these findings provide basic information on the cell types that perform protein digestion in M. amazonicum, and will be useful in further nutritional research. The identification and characterization of digestive cells is an important step towards understanding the digestive mechanisms.