137 resultados para ALGINATE SCAFFOLDS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous titanium scaffolds are promising materials for biomedical applications such as prosthetic anchors, fillers and bone reconstruction. This study evaluated the bone/titanium interface of scaffolds with interconnected pores prepared by powder metallurgy, using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Porous scaffolds and dense samples were implanted in the tibia of rabbits, which were subsequently killed 1, 4, and 8 weeks after surgery. Initial bone neoformation was observed one week after implantation. Bone ingrowth in pores and the Ca/P ratio at the interface were remarkably enhanced at 4 and 8 weeks. The results showed that the interconnected pores of the titanium scaffolds promoted bone ingrowth, which increased over time. The powder metallurgy technique thus proved effective in producing porous scaffolds and dense titanium for biomedical applications, allowing for adequate control of pore size and porosity and promoting bone ingrowth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to develop porous hydroxyapatite scaffold for bone regeneration using the replica of the polymeric sponge technique. Polyurethane sponges were used with varying densities to obtain the scaffolds. The results indicate the porous HA scaffolds developed in this study as potential materials for application as bone substitutes to have high porosity (> 70%), chemical composition, interconnectivity and pore sizes appropriate to the bone regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA biosensors have gained increased attention over traditional diagnostic methods due to their fast and responsive operation and cost-effective design. The specificity of DNA biosensors relies on single-stranded oligonucleotide probes immobilized to a transduction platform. Here, we report the development of biosensors to detect the hippuricase gene (hipO) from Campylobacter jejuni using direct covalent coupling of thiol- and biotin-labeled single-stranded DNA (ssDNA) on both surface plasmon resonance (SPR) and diffraction optics technology (DOT, dotLab) transduction platforms. This is the first known report of the dotLab to detect targeted DNA. Application of 6-mercapto-1-hexanol as a spacer thiol for SPR gold surface created a self-assembled monolayer that removed unbound ssDNA and minimized non-specific detection. The detection limit of SPR sensors was shown to be 2.5 nM DNA while dotLab sensors demonstrated a slightly decreased detection limit of 5.0 nM (0.005 μM). It was possible to reuse the SPR sensor due to the negligible changes in sensor sensitivity (∼9.7 × 10 -7 ΔRU) and minimal damage to immobilized probes following use, whereas dotLab sensors could not be reused. Results indicated feasibility of optical biosensors for rapid and sensitive detection of the hipO gene of Campylobacter jejuni using specific ssDNA as a probe. © 2011 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zymomonas mobilis was immobilized using a cell suspension fixed to 8.6 x 10(7) CFU mL(-1) by spectrophotometry. This biomass was suspended in sodium alginate solution (3%) that was dropped with a hypodermic syringe into 0.2 M calcium chloride solution. Was test two initial pH of fermentation medium (4 and 5) and different sucrose concentrations 15, 20, 25, 30 and 35% at 30 degrees C, without stirring for 24, 48, 72 and 96 hours. The levan production to pH 4 was high in sucrose 25% for 24 (16.51 g L-1) and 48 (15.31 g L-1) hours. The best values obtained to pH 5 was in sucrose 35% during 48 (22.39 g L-1) and 96 (23.5 g L-1) hours, respectively. The maximum levan yield was 40.8% and 22.47% in sucrose 15% to pH 4 and 5, respectively. Substrate consumption to pH 4 was bigger in sucrose 15 (56.4%) and 20% (59.4%) and to pH 5 was in 25 (68.85%) and 35% (64.64%). In relation to immobilization efficiency, Zymomonas mobilis showed high adhesion and colonization in support, indicated by cell growth increased from 107 to 10(9) CFU mL(-1) during fermentation time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial cellulose (BC) has become established as a remarkably versatile biomaterial and can be used in a wide variety of scientific applications, especially for medical devices. In this work, the bacterial cellulose fermentation process is modified by the addition of chondroitin sulfate (1% w/w) to the culture medium before the bacteria are inoculated. Besides, biomimetic precipitation of calcium phosphate of biological interest from simulated body fluid on bacterial cellulose was studied. Chondroitin sulfate influences in bacterial cellulose were analyzed using transmission infrared spectroscopy (FTIR), XRD (X-ray diffraction) and scanning electron microscopy (SEM). FTIR analysis showed interaction between chondroitin sulfate, bacterial cellulose and calcium phosphate and XRD demonstrated amorphous calcium phosphate and carbonated apatite on bacterial cellulose nanocomposites. SEM images confirmed incorporation of calcium phosphate in bacterial celluloe nanocomposite surface and uniform spherical calcium phosphate particles. Future experiments with cells adhesion and viability are in course.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial cellulose (BC) has become established as a remarkably versatile biomaterial and can be used in a wide variety of scientific applications, especially for medical devices. In this work, the bacterial cellulose fermentation process is modified by the addition of chondroitin sulfate and hyaluronic acid (1% w/w) to the culture medium before the bacteria is inoculated. Besides, biomimetic precipitation of calcium phosphate of biological interest from simulated body fluid on bacterial cellulose was studied. Chondroitin sulfate and hyaluronic acid effects in bacterial cellulose were analyzed using transmission infrared spectroscopy (FTIR), XRD (X-ray diffraction) and scanning electron microscopy (SEM). FTIR analysis showed interaction between bacterial cellulose nanobiocomposites and calcium phosphate. XRD demonstrated amorphous calcium phosphate, carbonated apatite and calcium chloride on bacterial cellulose nanobiocomposites. Monocalcium phosphate monohydrate phase formation [Ca(H2PO4)(2)center dot H2O] are here attested by FTIR, XRD and Ca/P relation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Com a evolução da engenharia tecidual novos materiais estão sendo estudados visando o tratamento de defeitos ósseos. O objetivo deste projeto foi preparar e caracterizar scaffolds a base de polihidroxibutirato (PHB), apatita e peptídeo osteogênico, osteogenic growth peptide (OGP), para aplicação em reparação óssea. Além disso, avaliar a liberação prolongada do peptídeo incorporado aos scaffolds na forma livre ou incorporado a lipossomas. Os scaffolds de PHB foram confeccionados por prototipagem rápida (PR) empregando a tecnologia Selective Laser Sintering (SLS). Posteriormente, a apatita foi incorporada in situ por meio de ciclos alternados de imersão em soluções de CaCl2 e Na2HPO4, respectivamente. Neste estudo foram selecionadas 2 marcações para o OGP, uma com 5,6-carboxifluoresceína (CF) e outra com triptofano (W), para análise de liberação prolongada. Os peptídeos foram incorporados ao sistema de liberação no momento de seu preparo. A caracterização por espalhamento de luz dos sistemas de liberação desenvolvidos mostrou que os peptídeos marcados com CF foram os melhores desenvolvidos. Portanto estes peptídeos foram adsorvidos nos scaffolds de PHB-CaP. Estudos in vitro foram realizados para avaliar o perfil de liberação do peptídeo OGP-CF do sistema de liberação controlada. A incorporação da apatita às matrizes de PHB foi confirmada por análises de microscopia eletrônica de varredura/ espectroscopia de energia dispersiva (MEV/EDS), espectroscopia na região do infravermelho (FTIR), absorção atômica, a difratometria de raios-X (DRX). Estas análises sugeriram que a principal fase precipitada foi -TCP. O sistema de liberação lipossoma/OGP-CF foi caracterizado pelas análises de dicroísmo circular e espalhamento de luz, que confirmaram a presença do peptídeo nas amostras. Após a análise da liberação, observou-se que o sistema PHB-CaP/OGP-CF obteve ...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malformations and possible damages to the urogenital system can be originated in the embryonic period. Moreover, fire guns, knives and accidents, where there is the disruption of the urethra, also cause these lesions. The objective was to analyze the contribution of tissue engineering in the construction of neo-urethra, developed by bioengineering. We performed an urothelial ex vivo expansion of cells in 3D scaffolds (platelet gel matrix and acellular porcine aorta) to assess the contribution of this technique in the construction of a neo-urethra. Mechanical dissociation was made of the inner wall of 10 North Folk rabbit’s bladder, weighing 2.5 to 3.0 kg. After dissociation the cell content was centrifuged and obtained a pellet of urothelial cells. The pellet was ressuspended in culture medium DMEM F12 and cells were maintained in culture for 15 days. Immunohistochemical analysis characterized the urothelial culture. The cells were then implanted in the scaffold - platelet gel. In a second experiment using aortic porcine acellular matrix were implanted urothelial cells alone and urothelial cells on platelet gel, on the inner wall of the scaffold - aorta, with space for setting bordered by a urethral probe. The complex probe - cells - aorta and probe - cells in platelet gel - aorta, were sealed with suture material and culture were maintained in a humidified 37ºC incubator with 5% CO2 in air for 12 days to subsequent histological analysis of urothelium cell adhesion to the scaffolds. By observation under an optical microscope, we could see the growth of cells in the scaffold platelet gel, from a monolayer in to a three-dimensional structure. In the acellular porcine aortic matrix containing the platelet gel, we could observe a few quantity of urothelial cells adhered. However with the acellular porcine aortic matrix in which was implanted only the urothelial cells, we have obtained adhesion to the wall