45 resultados para AKT PHOSPHORYLATION
Resumo:
The nuclear import of simian-virus-40 large T-antigen (tumour antigen) is enhanced via phosphorylation by the protein kinase CK2 at Ser(112) in the vicinity of the NLS (nuclear localization sequence). To determine the structural basis of the effect of the sequences flanking the basic cluster KKKRK, and the effect of phosphorylation on the recognition of the NLS by the nuclear import factor importin-alpha (Impalpha), we co-crystallized non-autoinhibited Impalpha with peptides corresponding to the phosphorylated and non-phosphorylated forms of the NLS, and determined the crystal structures of the complexes. The structures show that the amino acids N-terminally flanking the basic cluster make specific contacts with the receptor that are distinct from the interactions between bipartite NLSs and Impalpha. We confirm the important role of flanking sequences using binding assays. Unexpectedly, the regions of the peptides containing the phosphorylation site do not make specific contacts with the receptor. Binding assays confirm that phosphorylation does not increase the affinity of the T-antigen NLS to Impalpha. We conclude that the sequences flanking the basic clusters in NLSs play a crucial role in nuclear import by modulating the recognition of the NLS by Impalpha, whereas phosphorylation of the T-antigen enhances nuclear import by a mechanism that does not involve a direct interaction of the phosphorylated residue with Impalpha.
Resumo:
Background: Interest in folliculogenesis has grown extensively in recent years. Nevertheless, several aspects of follicular activity are still poorly understood. Thus, in vitro culture of ovarian follicles using new substances has been established as a very viable model, enhancing the prospects for a better understanding of follicular activity. Among the family members of the fibroblast growth factor (FGFs), FGF-10 has received recent attention for its ability to regulate the development of ovarian follicles and oocyte maturation. Given the relevance of FGF-10 in the folliculogenesis process, this review aimed to describe the structural features, expression and the main biological effects of FGF-10 on the development of ovarian follicles in mammals.Review: Along this work, it was shown aspects related to structural characterization of FGF-10 and its receptors, as well as FGF-10 expression in different cell types, emphasizing its importance to follicular development. FGF-10 is a paracrine member of the family of FGFs, and is characterized by promoting biological responses via cell surface receptors (FGFRs) of tyrosine kinase-type. of these receptors, FGFR-1, FGFR-2 and FGFR-3 may undergo alternative transcriptional arrangements, enabling the formation of two isoforms (b and c) that have varying degrees of affinity for the various FGFs. Thus, seven FGFR proteins (FGFRs 1b, 1c, 2b, 2c, 3b, 3c and 4) with different binding specificities are generated from the four FGFR genes. The FGFRs transmit intracellular signals after binding with the ligand through the phosphorylation of tyrosine, which activates various transduction patterns in the cytoplasm. The signal transduction of FGF-10 may occur through three main pathways: protein of rat sarcoma (Ras)/MAPK, PLC gamma/Ca(2+) and phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt), which are involved in the transmission of biological signals, leading to cellular proliferation and differentiation. FGF-10 mRNA expression was detected in the ovarian stroma, oocyte and theca cells of preantral and antral follicles. on the other hand, the expression of mRNA for FGF-10 receptors was found in, granulosa cells, theca cells, cumulus cells and oocytes. Although FGFs are widely distributed in different tissues and cell types, the importance and function of FGFs in the ovary are still poorly documented. FGF-10 has been shown to be an important mediator of mesenchymal and epithelial cell interactions during follicle development, promoting follicular survival, activation and growth. Besides the action on folliculogenesis, FGF-10 was recently identified as a growth factor able to improve oocyte competence. However, in antral follicles, the presence of FGF-10 is associated with increased follicular atresia, which matches its anti-estrogenic action.Discussion: From this review, we can conclude that FGF-10 is an important regulator of female reproduction. This growth factor acts in follicle survival, oocyte maturation, expansion of cumulus cells and proliferation of granulosa/theca cellsthrough direct and/or indirect actions in the control of folliculogenesis. Furthermore, FGF-10 seemed to have different effects throughout the follicular development. However, it is necessary to perform additional studies that may provide a better understanding about the importance of FGF-10 during folicullogenesis.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Respirometric experiments demonstrated that the oxygen uptake by Thiobacillus ferrooxidans strain LR was not inhibited in the presence of 200 mM copper. Copper-treated and untreated cells from this T. ferrooxidans strain were used in growth experiments in the presence of cadmium, copper, nickel and zinc. Growth in the presence of copper was improved by the copper-treated cells. However, no growth was observed for these cells, within 190 h of culture, when cadmium, nickel and zinc were added to the media. Changes in the total protein synthesis pattern were detected by two-dimensional polyacrylamide gel electrophoresis for T. ferrooxidans LR cells grown in the presence of different heavy metals. Specific proteins were induced by copper (16, 28 and 42 kDa) and cadmium (66 kDa), whereas proteins that had their synthesis repressed were observed for all the heavy metals tested. Protein induction was also observed in the cytosolic and membrane fractions from T. ferrooxidans LR cells grown in the presence of copper. The level of protein phosphorylation was increased in the presence of this metal.
Resumo:
The presence of tyrosine-phosphorylated proteins was studied in cultured rat pancreatic islets, Immunoblotting performed with total extracts of islets cultured in the presence of 1.8 or 5.6 mM glucose revealed at least three distinct tyrosine-phosphorylated bands (25 kDa, 95 kDa and 165-185 kDa). After 12 h incubation in medium containing 1.8 mM glucose, a pulse exposition to 11 or 22 mM glucose or to 10(-7) M insulin led to a substantial increase in the phosphorylation of all three bands, with no appearance of novel bands. Immunoprecipitation with specific antibodies demonstrated that the signal detected at 95 kDa corresponds to the beta subunit of the insulin receptor (IR) while the band at 165-185 kDa corresponds to the early substrates of the insulin receptor, IRS-1 and IRS-2. Immunoprecipitation with IRS-I or IRS-2 antisera detected their association with the lipid metabolizing enzyme phosphatidylinositol 3-kinase (PI 3-kinase), Thus, this is the first demonstration that elements involved in the insulin-signalling pathway of traditional target tissues are also present in pancreatic islets and are potentially involved in auto- and paracrine-signalling in this organ.
Mechanism for the uncoupling of oxidative phosphorylation by juliprosopine on rat brain mitochondria
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Malnutrition is related to diabetes in tropical countries. In experimental animals, protein deficiency may affect insulin secretion. However, the effect of malnutrition on insulin receptor phosphorylation and further intracellular signaling events is not known. Therefore, we decided to evaluate the rate of insulin secretion and the early molecular steps of insulin action in insulin-sensitive tissues of an animal model of protein deficiency. Pancreatic islets isolated from rats fed a standard (17%) or a low (6%) protein diet were studied for their secretory response to increasing concentrations of glucose in the culture medium. Basal as well as maximal rates of insulin secretion were significantly lower in the islets isolated from rats fed a low protein diet. Moreover, the dose-response curve to glucose was significantly shifted to the right in the islets from malnourished rats compared with islets from control rats. During an oral glucose tolerance test, there were significantly lower circulating concentrations of insulin in the serum of rats fed a low protein diet in spite of no difference in serum glucose concentration between the groups, suggesting an increased peripheral insulin sensitivity. Immunoblotting and immunoprecipitation were used to study the phosphorylation of the insulin receptor and the insulin receptor substrate-1 as well as the insulin receptor substrate-1-p85 subunit of phosphatidylinositol 3-kinase association in response to insulin. Values were greater in hind-limb muscle from rats fed a low protein diet compared with controls. No differences were detected in the total amount of protein corresponding to the insulin receptor or insulin receptor substrate-1 between muscle from rats fed the two diets. Therefore, we conclude that a decreased glucose-induced insulin secretion in pancreatic islets from protein-malnourished rats is responsible, at least in part, for an increased phosphorylation of the insulin receptor, insulin receptor substrate-1 and its association with phosphatidylinositol 3-kinase. These might represent some of the factors influencing the equilibrium in glucose concentrations observed in animal models of malnutrition and undernourished subjects.
Resumo:
Retinopathy, a common complication of diabetes, is characterized by an unbalanced production of nitric oxide (NO), a process regulated by nitric oxide synthase (NOS). We hypothesized that retinopathy might stem from changes in the insulin receptor substrate (IRS)/PI3K/AKT pathway and/or expression of NOS isoforms. Thus, we analysed the morphology and apoptosis index in retinas of obese rats in whom insulin resistance had been induced by a high-fat diet (HFD). Immunoblotting analysis revealed that the retinal tissue of HFD rats had lower levels of AKT1, eNOS and nNOS protein than those of samples taken from control animals. Furthermore, immunohistochemical analyses indicated higher levels of iNOS and 4-hydroxynonenal and a larger number of apoptotic nuclei in HFD rats. Finally, both the inner and outer retinal layers of HFD rats were thinner than those in their control counterparts. When considered alongside previous results, these patterns suggest two major ways in which HFD might impact animals: direct activity of ingested fatty acids and/or via insulin-resistance-induced changes in intracellular pathways. We discuss these possibilities in further detail and advocate the use of this animal model for further understanding relationships between retinopathy, metabolic syndrome and type 2 diabetes. © 2012 John Wiley & Sons, Ltd.
Resumo:
Loss of response on repetitive drug exposure (i.e., tachyphylaxis) is a particular problem for the vasoconstrictor effects of medications containing oxymetazoline (OXY), an α1-adrenoceptor (AR) agonist of the imidazoline class. One cause of tachyphylaxis is receptor desensitization, usually accompanied by phosphorylation and internalization. It is well established that a1A-ARs are less phosphorylated, desensitized, and internalized on exposure to the phenethylamines norepinephrine (NE), epinephrine, or phenylephrine (PE) than are the a1B and a1D subtypes. However, here we show in human embryonic kidney-293 cells that the low-efficacy agonist OXY induces G protein-coupled receptor kinase 2-dependent a1A-AR phosphorylation, followed by rapid desensitization and internalization (∼40% internalization after 5 minutes of stimulation), whereas phosphorylation of α1A-ARs exposed to NE depends to a large extent on protein kinase C activity and is not followed by desensitization, and the receptors undergo delayed internalization (∼35% after 60 minutes of stimulation). Native α1A-ARs from rat tail artery and vas deferens are also desensitized by OXY, but not by NE or PE, indicating that thisproperty of OXY is not limited to recombinant receptors expressed in cell systems. The results of the present study are clearly indicative of agonist-directed a1A-AR regulation. OXY shows functional selectivity relative to NE and PE at a1A-ARs, leading to significant receptor desensitization and internalization, which is important in view of the therapeutic vasoconstrictor effects of this drug and the varied biologic process regulated by α1A-ARs. Copyright © 2013 by The American Society for Pharmacology and Experimental Therapeutics.