52 resultados para 480 Classical
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The structure of integrable field theories in the presence of jump defects is discussed in terms of boundary functions under the Lagrangian formalism. Explicit examples of bosonic and fermionic theories are considered. In particular, the boundary functions for the N = 1 and N = 2 super sinh-Gordon models are constructed and shown to generate the Backlund transformations for its soliton solutions. As a new and interesting example, a solution with an incoming boson and an outgoing fermion for the N = 1 case is presented. The resulting integrable models are shown to be invariant under supersymmetric transformation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A mapping which relates the Wigner phase-space distribution function associated with a given stationary quantum-mechanical wavefunction to a specific solution of the time-independent Liouville transport equation is obtained. Two examples are studied.
Resumo:
Dynamical properties of the U-238-U-238 system at the classical turning point, specifically the distance of closest approach, the relative orientations of the nuclei, and deformations have been studied at the sub-Coulomb energy of E(lab) = 6.07 MeV/nucleon using a classical dynamical model with a variable moment of inertia. Probability of favorable alignment for anomalous positron-electron pair emission through vacuum decay is calculated. The calculated small favorable alignment probability value of 0.116 is found to be enhanced by about 16% in comparison with the results of a similar study using a fixed moment of inertia as well as the results from a semiquantal calculation reported earlier.
Resumo:
It is shown that the action functional S[g, phi] = integral d4 x square-root -g[R/k(1 + klambdaphi2) + partial derivative(mu)phi partial derivative(mu)phi] describes, in general, one and the same classical theory whatever may be the value of the coupling constant lambda.
Resumo:
In this paper we relate the numerical invariants attached to a projective curve, called the order sequence of the curve, to the geometry of the varieties of tangent linear spaces to the curve and to the Gauss maps of the curve. © 1992 Sociedade Brasileira de Matemática.
Resumo:
The Birkhoff-Gustavson normal form is employed to study separately chaos and resonances in a system with two degrees of freedom. In the integrable regime, tunnelling effects are appreciable when the nearest level spacings show oscillations. Tunnelling among states in the libration and rotation tori regions is also observed. The regularity of avoided crossings due to tunnelling indicates a collective effect and is associated with an isolated resonance. The spectral fluctuations also show a strong level correlation. The Husimi distribution, on the other hand, is insensitive to avoided crossings. An integrable approximation to the overlap of resonances is obtained and a theoretical description is given for an isolated cubic resonance plus a complex orbit. In the non-integrable regime chaos is stronger after overlapping and preferentially at low energies.
Resumo:
In the usual supersymmetric quantum mechanics, the supercharges change the eigenfunction from the bosonic to fermionic sector and conversely. The classical correspondent of this transformation is shown to be the addition of a total time derivative of a purely imaginary function to the Lagrangian function of the system.
Resumo:
It is proven that the classical pure spinor superstring in an AdS 5 × S5 back-ground has a flat current depending on a continuous parameter. This generalizes the recent result of Bena, et al. for the classical Green-Schwarz superstring. © SISSA/ISAS 2004.
Resumo:
In this work we present a mapping between the classical solutions of the sine-Gordon, Liouville, λφ4 and other kinks in 1+1 dimensions. This is done by using an invariant quantity which relates the models. It is easily shown that this procedure is equivalent to that used to get the so called deformed solitons, as proposed recently by Bazeia et al. [Phys. Rev. D. 66 (2002) 101701(R)]. The classical equivalence is explored in order to relate the solutions of the corresponding models and, as a consequence, try to get new information about them. We discuss also the difficulties and consequences which appear when one tries to extend the deformation in order to take into account the quantum version of the models.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)