94 resultados para 41 kDa protein
Resumo:
Treatment of patients with paracoccidioidomycosis is still a challenge. Patients present defective lymphoproliferation and IFN-γ responses to the main Paracoccidioides brasiliensis antigen (gp43), which correlates with disease severity. Here, we demonstrated that the patients show also a defective synthesis of interleukin (IL)-12. Therefore, we attempted to revert this immune disfunction by adding IL-12 and neutralizing anti-IL-10 antibody to gp-43-stimulated peripheral blood mononuclear cell cultures. Both treatments increased IFN-γ secretion to levels observed with healthy sensitized individuals, but affected proliferation only modestly. When combined, the treatments further increased IFN-γ synthesis and cell proliferation. The addition of suboptimal concentrations of IL-2 also further increased the IL-12-mediated secretion of IFN-γ. Interestingly, the immune modulation was mostly antigen-specific, since the responses to Candida albicans' antigen were not affected. These results suggest that appropriate immune intervention with cytokines and/or anti-cytokines may help in the treatment of PCM. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
BACKGROUND: Annexin 1 is a 37-kDa protein that has complex intra- and extracellular effects. To discover whether the absence of this protein alters bone development, we monitored this event in the annexin-A1 null mice in comparison with littermate wild-type controls. METHODS: Radiographic and densitometry methods were used for the assessment of bone in annexin-A1 null mice at a gross level. We used whole-skeleton staining, histological analysis, and Western blotting techniques to monitor changes at the tissue and cellular levels. RESULTS: There were no gross differences in the appendicular skeleton between the genotypes, but an anomalous development of the skull was observed in the annexin-A1 null mice. This was characterized in the newborn annexin-A1 null animals by a delayed intramembranous ossification of the skull, incomplete fusion of the interfrontal suture and palatine bone, and the presence of an abnormal suture structure. The annexin-A1 gene was shown to be active in osteocytes during this phase and COX-2 was abundantly expressed in cartilage and bone taken from annexin-A1 null mice. CONCLUSIONS: Expression of the annexin-A1 gene is important for the normal development of the skull in mice, possibly through the regulation of osteoblast differentiation and a secondary effect on the expression of components of the cPLA2-COX-2 system. © 2007 Wiley-Liss, Inc.
Resumo:
Many neuropsychiatric conditions have a common set of neurological substrates associated with the integration of sensorimotor processing. The teneurins are a recently described family of proteins that play a significant role in visual and auditory development. Encoded on the terminal exon of the teneurin genes is a family of bioactive peptides, termed teneurin C-terminal associated peptides (TCAP), which regulate mood-disorder associated behaviors. Thus, the teneurin-TCAP system could represent a novel neurological system underlying the origins of a number of complex neuropsychiatric conditions. However, it is not known if TCAP-1 exerts its effects as part of a direct teneurin function, whereby TCAP represents a functional region of the larger teneurin protein, or if it has an independent role, either as a splice variant or post-translational proteolytic cleavage product of teneurin. In this study, we show that TCAP-1 can be transcribed as a smaller mRNA transcript. After translation, further processing yields a smaller 15. kDa protein containing the TCAP-1 region. In the mouse hippocampus, immunoreactive (ir) TCAP-1 is exclusively localized to the pyramidal layers of the CA1, CA2 and CA3 regions. Although the localization of TCAP and teneurin in hippocampal regions is similar, they are distinct within the cell as most ir-teneurin is found at the plasma membrane, whereas ir-TCAP-1 is predominantly found in the cytosol. Moreover, in mouse embryonic hippocampal cell culture, FITC-labeled TCAP-1 binds to the plasma membrane and is taken up into the cytosol via dynamin-dependent caveolae-mediated endocytosis. Our data provides novel evidence that TCAP-1 is structurally and functionally distinct from the larger teneurins. © 2012.
Resumo:
The aim of this study was to investigate the acute phase response (APR) in 15 horses by quantifying physiological venous blood variables and serum acute phase proteins (APP) at 5 minutes and 6 and 12 hours after a training match of high-goal polo. The horses were divided into three experimental groups based on their team positions, including defense (n = 6), midfield (n = 5), and attack (n = 4). Serum proteinograms were obtained by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Data were evaluated using analysis of variance for repeated measures. The match represented a high-intensity stimulus for all positions. Defenders appeared to use the anaerobic pathway more than the other positions, as shown by their lower pH and greater lactatemia. Alterations in muscle membrane permeability were observed in all horses, as seen by the increase in serum creatine kinase activity without a correlation with APR. Significant elevations in total serum protein, albumin, ceruloplasmin, haptoglobin, alpha-1 antitrypsin, and 23-kDa protein were seen only during the course of the physical exertion of the match, although there were no differences in these values among positions of the team. After 6 hours of the match, the concentration of transferrin declined, whereas that of alpha-1 acid glycoprotein remained unaltered at all assessed times. These results demonstrated that the defenders required the most use of the anaerobic pathway during the match, and that equestrian polo exercise triggers an acute phase response of relatively short duration; this APR is characterized as noninflammatory, as APR appears to be a physiological alteration related to the stress inherent in physical exercise. © 2013 Elsevier Inc. All rights reserved.
Resumo:
Atypical enteropathogenic Escherichia coli (aEPEC) strains are diarrheal pathogens that lack bundle-forming pilus production but possess the virulence-associated locus of enterocyte effacement. aEPEC strain 1551-2 produces localized adherence (LA) on HeLa cells; however, its isogenic intimin (eae) mutant produces a diffuse-adherence (DA) pattern. In this study, we aimed to identify the DA-associated adhesin of the 1551-2 eae mutant. Electron microscopy of 1551-2 identified rigid rod-like pili composed of an 18-kDa protein, which was identified as the major pilin subunit of type 1 pilus (T1P) by mass spectrometry analysis. Deletion of fimA in 1551-2 affected biofilm formation but had no effect on adherence properties. Analysis of secreted proteins in supernatants of this strain identified a 150-kDa protein corresponding to SslE, a type 2 secreted protein that was recently reported to be involved in biofilm formation of rabbit and human EPEC strains. However, neither adherence nor biofilm formation was affected in a 1551-2 sslE mutant. We then investigated the role of the EspA filament associated with the type 3 secretion system (T3SS) in DA by generating a double eae espA mutant. This strain was no longer adherent, strongly suggesting that the T3SS translocon is the DA adhesin. In agreement with these results, specific anti-EspA antibodies blocked adherence of the 1551-2 eae mutant. Our data support a role for intimin in LA, for the T3SS translocon in DA, and for T1P in biofilm formation, all of which may act in concert to facilitate host intestinal colonization by aEPEC strains. ©2013, American Society for Microbiology.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Genética - IBILCE
Resumo:
Pós-graduação em Biociências e Biotecnologia Aplicadas à Farmácia - FCFAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)