22 resultados para 3D laser scanner
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The photosensitivity of GeSx binary glasses in response to irradiation to femtosecond pulses at 800 nm is investigated. Samples with three different molecular compositions were irradiated under different exposure conditions. The material response to laser exposure was characterized by both refractometry and micro-Raman spectroscopy. It is shown that the relative content of sulfur in the glass matrix influences the photo-induced refractive index modification. At low sulfur content, both positive and negative index changes can be obtained while at high sulfur content, only a positive index change can be reached. These changes were correlated with variations in the Raman response of exposed glass which were interpreted in terms of structural modifications of the glass network. Under optimized exposure conditions, waveguides with positive index changes of up to 7.8x10−3 and a controllable diameter from 14 to 25 μm can be obtained. Direct inscription of low insertion losses (IL = 3.1 – 3.9 dB) waveguides is demonstrated in a sample characterized by a S/Ge ratio of 4. The current results open a pathway towards the use of Ge-S binary glasses for the fabrication of integrated mid-infrared photonic components.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper, a method is proposed to refine the LASER 3D roofs geometrically by using a high-resolution aerial image and Markov Random Field (MRF) models. In order to do so, a MRF description for grouping straight lines is developed, assuming that each projected side contour and ridge is topologically correct and that it is only necessary to improve its accuracy. Although the combination of laser data with data from image is most justified for refining roof contour, the structure of ridges can give greater robustness in the topological description of the roof structure. The MRF model is formulated based on relationships (length, proximity, and orientation) between the straight lines extracted from the image and projected polygon and also on retangularity and corner injunctions. The energy function associated with MRF is minimized by the genetic algorithm optimization method, resulting in the grouping of straight lines for each roof object. Finally, each grouping of straight lines is topologically reconstructed based on the topology of the corresponding LASER scanning polygon projected onto the image-space. The results obtained were satisfactory. This method was able to provide polygons roof refined buildings in which most of its contour sides and ridges were geometrically improved.
Resumo:
The use of computer-assisted technologies such as CAD - Computed Aided Design, CAM - Computed Aided Manufacturing, CAE - Computed Aided Engineering and CNC - Computed Numerical Control, are priorities in engineering and product designers. However, the dimensional measurement between the virtual and the real product design requires research, and dissemination procedures among its users. This work aims to use these technologies, through analysis and measurement of a CNC milling machine, designed and assembled in the university. Through the use of 3D scanning, and analyzing images of the machined samples, and its original virtual files, it was possible to compare the sizes of these samples in counterposition to the original virtual dimensions, we can state that the distortions between the real and virtual, are within acceptable limits for this type of equipment. As a secondary objective, this work seeks to disseminate and make more accessible the use of these technologies.