112 resultados para 321403 Motor Control
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Cerebral palsy (CP) describes a group of permanent disorders of the development of movement and posture, causing activity limitation, that are attributed to non-progressive disturbances that occurred in the developing fetal or infant brain.A child with cerebral palsy may have impairments in motor control, which contributes to loss of functional abilities in posture and mobility. The severity of the impairment on the neuromuscular system determines the variations of functional mobility in children with cerebral palsy. The control of the patient, during the dental treatment, is of fundamental importance because these patients present some pathological reflexes which interfere in the odontological assistance
Resumo:
Pós-graduação em Fisioterapia - FCT
Resumo:
Networked control systems (NCSs) are distributed control system in which sensors, actuators and controllers are physically separated and connected through communication networks. NCS represent the evolution of networked control architectures providing greater modularity and control decentralization, ease maintenance and diagnosis and lower cost of implementation. A recent trend in this research topic is the development of NCS using wireless networks(WNCS)which enable interoperability between existing wiredand wireless systems. This paper presents the feasibility analysis of using serial to wireless converter as a wireless sensor link in NCS. In order to support this investigation, relevant performance metrics for wireless control applications such as jitter, time delay and messages lost are highlighted and calculated to evaluate the wireless converter capabilities. In addition the control performance of an implemented motor control system using the converter is analyzed. Experimental results led to the conclusion that serial ZigBee device isrecommended against the Bluetooth as it provided better metrics for control applications. However, bothdevices can be used to implement WNCS providing transmission rates and closed control loop times which are acceptable for NCS applications.Moreoverthe use of thewireless device delay in the PID controller discretization can improve the control performance of the system.
Resumo:
Human motion seems to be guided by some optimal principles. In general, it is assumed that human walking is generated with minimal energy consumption. However, in the presence of disturbances during gait, there is a trade-off between stability (avoiding a fall) and energy-consumption. This work analyses the obstacle-crossing with the leading foot. It was hypothesized that energy-saving mechanisms during obstacle-crossing are modulated by the requirement to avoid a fall using the available sensory information, particularly, by vision. A total of fourteen subjects, seven with no visual impairment and seven blind, walked along a 5 meter flat pathway with an obstacle of 0.26 m height located at 3 m from the starting point. The seven subjects with normal vision crossed the obstacle successfully 30 times in two conditions: blindfolded and with normal vision. The seven blind subjects did the same 30 times. The motion of the leading limb was recorded by video at 60 Hz. There were markers placed on the subject's hip, knee, ankle, rear foot, and forefoot. The motion data were filtered with a fourth order Butterworth filter with a cut-off frequency of 4 Hz. The following variables were calculated: horizontal distance between the leading foot and the obstacle at toe-off prior to (DHPO) and after (DHOP) crossing, minimal vertical height from the foot to the obstacle (DVPO), average step velocity (VELOm). The segmental energies were also calculated and the work consumed by the leading limb during the crossing obstacle was computed for each trial. A statistical analysis repeated-measures ANOVA was conducted on these dependent variables revealing significant differences between the vision and non-vision conditions in healthy subjects. In addition, there were no significant differences between the blind and people with vision blindfolded. These results indicate that vision is crucial to determine the optimal trade-off between energy consumption and avoiding a trip during obstacle crossing.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Esse estudo teve como objetivo examinar possíveis alterações na dinâmica intrínseca de crianças e adultos decorrentes de informações externas na realização de uma tarefa de manutenção da postura ereta. Participaram do estudo dez crianças de 8 anos de idade e dez adultos jovens de ambos os gêneros. Eles permaneceram na posição ereta dentro de uma sala móvel que foi movimentada continuamente para frente e para trás. Os participantes recebiam informação sobre o movimento da sala e eram solicitados a não oscilar ou a oscilar junto com o movimento da mesma. Os resultados mostraram que a manipulação da informação visual induziu oscilação corporal correspondente (dinâmica intrínseca) em crianças e adultos. Informação sobre o movimento da sala e solicitação de uma ação (informação comportamental) alteraram o relacionamento entre informação visual e oscilação corporal. Crianças apresentaram mais dificuldades em alterar a dinâmica intrínseca do que adultos, indicando que elas são mais dependentes da dinâmica intrínseca do que adultos. Esses resultados trazem implicações importantes para a situação de ensino-aprendizagem, pois indica que aprendizagem envolvendo crianças deve ser estruturada propiciando condições mais favoráveis para alterações na dinâmica intrínseca para que os objetivos da mesma sejam alcançados.
Resumo:
INTRODUÇÃO: Comprometimentos na marcha de pacientes com paralisia supranuclear progressiva (PSP) podem aumentar o risco de quedas durante o andar, especialmente em ambientes complexos. OBJETIVO: Descrever o comportamento locomotor de uma paciente com PSP, nas condições de marcha livre e marcha adaptativa. MATERIAIS E MÉTODOS: Estudo de caso de uma paciente com PSP (71 anos). Para análise cinemática, nas condições de marcha livre, com obstáculo baixo e alto, uma câmera digital registrou uma passada completa da paciente. RESULTADOS: Com o aumento da complexidade do ambiente (marcha livre, obstáculo baixo e alto, respectivamente), foi observada diminuição do comprimento do passo (0,37 ± 0,07; 0,30 ± 0,07; 0,26 ± 0,06 m), do comprimento da passada (0,71 ± 0,11; 0,58 ± 0,15; 0,47 ± 0,07 m) e da velocidade da passada (0,55 ± 0,14; 0,43 ± 0,11; 0,36 ± 0,11 m/s). Aumento progressivo ocorreu na duração do duplo suporte da passada livre (29,47%) para a passada antes do obstáculo alto (41,11%). Observou-se, ainda, ligeira diminuição na distância vertical pé/obstáculo alto (membro/abordagem: 7,18 ± 1,88; e membro/suporte: 8,84 ± 2,57 cm) em relação ao obstáculo baixo (membro de abordagem: 8,86 ± 1,88; e membro de suporte: 11,67 ± 2,09 cm). CONCLUSÃO: A PSP afetou de forma evidente a marcha da paciente. Inflexibilidade para a adaptação da marcha às demandas do ambiente foi observada durante a aproximação e a transposição dos obstáculos, o que pode aumentar o risco de tropeços e quedas.
Resumo:
This study examined the influence of both optic flow characteristics and intention on postural control responses. Two groups of 10 adults each were exposed to the room's movement either at 0.6 cm/s (low velocity group) or 1.0 cm/s (high velocity group). All the participants stood in the upright stance inside of a moving room and were informed about the room movement only after the fourth trial as they were asked to resist to its influence. Results revealed that participants from both groups were influenced by the imposed visual stimulus in the first trials, but the coupling strength was weaker for the high velocity group. The request to resist the visual influences decreased visual influences oil body sway, but only for the low velocity group. These results indicate that intention might play a role in stimulus influences on body sway but it is stimulus dependent.
Resumo:
Crossing moving obstacles requires different space-time adjustments compared with stationary obstacles. Our aim was to investigate gait spatial and temporal parameters in the approach and crossing phases of a moving obstacle. We hypothesized that obstacle speed affects gait parameters, which allow us to distinguish locomotor strategies. Ten young adults walked and stepped over an obstacle that crossed their way perpendicularly, under three obstacle conditions: control-stationary obstacle, slow (1.07 m/s) and fast speed (1.71 m/s) moving obstacles. Gait parameters were different between obstacle conditions, especially on the slow speed. In the fast condition, the participants adopted predictive strategies during the approach and crossing phases. In the slow condition, they used an anticipatory strategy in both phases. We conclude that obstacle speed affects the locomotor behavior and strategies were distinct in the obstacle avoidance phases.
Resumo:
Locomotion generates a visual movement pattern characterized as optic flow. To explore how the locomotor adjustments are affected by this pattern, an experimental paradigm was developed to eliminate optic flow during obstacle avoidance. The aim was to investigate the contribution of optic flow in obstacle avoidance by using a stroboscopic lamp. Ten young adults walked on an 8m pathway and stepped over obstacles at two heights. Visual sampling was determined by a stroboscopic lamp (static and dynamic visual sampling). Three-dimensional kinematics data showed that the visual information about self-motion provided by the optic flow was crucial for estimating the distance from and the height of the obstacle. Participants presented conservative behavior for obstacle avoidance under experimental visual sampling conditions, which suggests that optic flow favors the coupling of vision to adaptive behavior for obstacle avoidance.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Aim: Children with cerebral palsy (CP) are regularly confronted with physical constraints during locomotion. Because abnormalities in motor control are often related to perceptual deficits, the aim of this study was to find out whether children with CP were able to walk across a road as safely as their non-handicapped peers. Method: Ten children with CP and 10 non-handicapped children aged 4-14 y were asked to cross a simulated road if they felt the situation was safe. Results: With respect to safety and accuracy of crossings, the behaviour of children with CP was comparable with that of non-handicapped children. However, a closer examination of children's individual crossing behaviour showed considerable differences within the CP group. In contrast to children with damage to the left hemisphere, children with damage to the right hemisphere made unsafe decisions and did not compensate for them by increasing walking speed.Conclusion: the differences in unsafe behaviour and in the ability to compensate for it within the group of children with CP might be related to damage to specific regions of the brain that are involved in the processing of spatial or temporal information.
Resumo:
A number of studies have analyzed various indices of the final position variability in order to provide insight into different levels of neuromotor processing during reaching movements. Yet the possible effects of movement kinematics on variability have often been neglected. The present study was designed to test the effects of movement direction and curvature on the pattern of movement variable errors. Subjects performed series of reaching movements over the same distance and into the same target. However, due either to changes in starting position or to applied obstacles, the movements were performed in different directions or along the trajectories of different curvatures. The pattern of movement variable errors was assessed by means of the principal component analysis applied on the 2-D scatter of movement final positions. The orientation of these ellipses demonstrated changes associated with changes in both movement direction and curvature. However, neither movement direction nor movement curvature affected movement variable errors assessed by area of the ellipses. Therefore it was concluded that the end-point variability depends partly, but not exclusively, on movement kinematics.