83 resultados para 290602 Process Control and Simulation
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In the search for productivity increase, industry has invested on the development of intelligent, flexible and self-adjusting method, capable of controlling processes through the assistance of autonomous systems, independently whether they are hardware or software. Notwithstanding, simulating conventional computational techniques is rather challenging, regarding the complexity and non-linearity of the production systems. Compared to traditional models, the approach with Artificial Neural Networks (ANN) performs well as noise suppression and treatment of non-linear data. Therefore, the challenges in the wood industry justify the use of ANN as a tool for process improvement and, consequently, add value to the final product. Furthermore, Artificial Intelligence techniques such as Neuro-Fuzzy Networks (NFNs) have proven effective, since NFNs combine the ability to learn from previous examples and generalize the acquired information from the ANNs with the capacity of Fuzzy Logic to transform linguistic variables in rules.
Resumo:
A study was conducted on the effects of acute administration of aminophylline on physiological variables in purebred Arabian horses submitted to incremental exercise test. Twelve horses were submitted to two physical tests separated by a 10-day interval in a crossover study. These horses were divided into two groups: control (C, n = 12) and aminophylline (AM, n = 12). The drug at 10 mg/kg body weight or saline was given intravenously, 30 minutes before the incremental exercise test. The treadmill exercise test consisted of an initial warmup followed by gradually increasing physical exigency. Blood samples were assayed for lactic acid, glucose, and insulin. Maximal lactic acidemia was greater (P = .0238) in the AM group. Both V-2 and V-4 (velocities at which lactate concentrations were 2 and 4 mmol/ L, respectively) were reduced in the AM group by 15.85% (P = .0402) and 17.76% (P = .0 109), respectively. At rest as well as at 4 minutes, insulinemia was greater in the AM group (P = .0417 and .0393), Glycemia group at times 8 was statistically lower in the Al (P = .0138) and 10 minutes (P = .0432). Use of ammophylline in horses during incremental exercise does not seem to be beneficial, because this drug has a tendency to cause hypoglycemia and to increase dependence on anaerobic glucose metabolism.
Resumo:
The jeju is a teleost fish with bimodal respiration that utilizes a modified swim bladder as an air-breathing organ (ABO). Like all air-breathing fish studied to date, jeju exhibit pronounced changes in heart rate (f(H)) during air-breathing events, and it is believed that these may facilitate oxygen uptake (M-O2) from the ABO. The current study employed power spectral analysis (PSA) of f(H) patterns, coupled with instantaneous respirometry, to investigate the autonomic control of these phenomena and their functional significance for the efficacy of air breathing. The jeju obtained less than 5% of total M-O2 (M-tO2) from air breathing in normoxia at 26 degrees C, and PSA of beat-to-beat variability in fH revealed a pattern similar to that of unimodal water-breathing fish. In deep aquatic hypoxia (water P-O2=1 kPa) the jeju increased the frequency of air breathing (f(AB)) tenfold and maintained M-tO2 unchanged from normoxia. This was associated with a significant increase in heart rate variability (HRV), each air breath (AB) being preceded by a brief bradycardia and then followed by a brief tachycardia. These f(H) changes are qualitatively similar to those associated with breathing in unimodal air-breathing vertebrates. Within 20 heartbeats after the AB, however, a beat-to-beat variability in f(H) typical of water-breathing fish was re-established. Pharmacological blockade revealed that both adrenergic and cholinergic tone increased simultaneously prior to each AB, and then decreased after it. However, modulation of inhibitory cholinergic tone was responsible for the major proportion of HRV, including the precise beat-to-beat modulation of f(H) around each AB. Pharmacological blockade of all variations in f(H) associated with air breathing in deep hypoxia did not, however, have a significant effect upon f(AB) or the regulation of M-tO2. Thus, the functional significance of the profound HRV during air breathing remains a mystery.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A Neuropatia diabética periférica (NDP) cursa com redução somatossensitiva que pode levar a alterações no controle postural. O objetivo do estudo foi avaliar o controle postural na postura ereta, em diferentes condições, e o equilíbrio funcional em indivíduos com NDP, correlacionar os resultados obtidos na avaliação do controle postural com os valores do teste do equilíbrio funcional e comparar os resultados obtidos no grupo neuropata com o grupo controle, verificando as possíveis diferenças entre as condições de avaliação em ambos os grupos. Participaram do estudo 13 mulheres com NDP (GN) e 17 mulheres não diabéticas (GC). A avaliação do controle postural foi realizada por cinemetria nas condições: olhos abertos (OA), olhos fechados (OF) e semi tandem (ST). Após processamento no MATLAB, foram geradas as variáveis: amplitude média de oscilação (AMO) na direção ântero-posterior (AP) e médio-lateral (ML); e velocidade média de oscilação (VMO) na direção AP e ML. O equilíbrio funcional foi avaliado pelo Timed Up and Go Test. Houve diferença significante entre os grupos (p<0,005) na AMO-AP OA e OF, AMO-ML of e ST e VMO-ML ST. Houve diferença entre as condições OA e ST (p<0,005) e of e ST (p<0,005) para as variáveis AMO-ML e VMO-ML, com maior prejuízo para o GN, que também apresentou um menor equilíbrio funcional (p=0,001). A instabilidade ML foi correlacionada positivamente com o desequilíbrio funcional. Os resultados nos mostram uma alteração no sistema de controle postural na NDP, o que pode levar estes indivíduos a um maior risco a quedas e prejuízos funcionais.
Resumo:
We propose and demonstrate the sequential initialization, optical control, and readout of a single spin trapped in a semiconductor quantum dot. Hole spin preparation is achieved through ionization of a resonantly excited electron-hole pair. Optical control is observed as a coherent Rabi rotation between the hole and charged-exciton states, which is conditional on the initial hole spin state. The spin-selective creation of the charged exciton provides a photocurrent readout of the hole spin state.
Resumo:
This paper presents a theoretical analysis of a density measurement cell using an unidimensional model composed by acoustic and electroacoustic transmission lines in order to simulate non-ideal effects. The model is implemented using matrix operations, and is used to design the cell considering its geometry, materials used in sensor assembly, range of liquid sample properties and signal analysis techniques. The sensor performance in non-ideal conditions is studied, considering the thicknesses of adhesive and metallization layers, and the effect of residue of liquid sample which can impregnate on the sample chamber surfaces. These layers are taken into account in the model, and their effects are compensated to reduce the error on density measurement. The results show the contribution of residue layer thickness to density error and its behavior when two signal analysis methods are used. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Difficulty with literacy acquisition is only one of the symptoms of developmental dyslexia. Dyslexic children also show poor motor coordination and postural control. Those problems could be associated with automaticity, i.e., difficulty in performing a task without dispending a fair amount of conscious efforts. If this is the case, dyslexic children would show difficulties in using "unperceived" sensory cues to control body sway. Therefore, the aim of the study was to examine postural control performance and the coupling between visual information and body sway in dyslexic children. Ten dyslexic children and 10 non-dyslexic children stood upright inside a moving room that remained stationary or oscillated back and forward at frequencies of 0.2 or 0.5 Hz. Body sway magnitude and the relationship between the room's movement and body sway were examined. The results indicated that dyslexic children oscillated more than non-dyslexic children in both stationary and oscillating conditions. Visual manipulation induced body sway in all children but the coupling between visual information and body sway was weaker and more variable in dyslexic children. Based upon these results, we can suggest that dyslexic children use visual information to postural control with the same underlying processes as non-dyslexic children; however, dyslexic children show poorer performance and more variability while relating visual information and motor action even in a task that does not require an active cognitive and conscious motor involvement, which may be a further evidence of automaticity problem. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)